SCLNet: A Scale-Robust Complementary Learning Network for Object Detection in UAV Images
- URL: http://arxiv.org/abs/2409.07024v1
- Date: Wed, 11 Sep 2024 05:39:25 GMT
- Title: SCLNet: A Scale-Robust Complementary Learning Network for Object Detection in UAV Images
- Authors: Xuexue Li,
- Abstract summary: This paper introduces a scale-robust complementary learning network (SCLNet) to address the scale challenges.
One implementation is based on our proposed scale-complementary decoder and scale-complementary loss function.
Another implementation is based on our proposed contrastive complement network and contrastive complement loss function.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most recent UAV (Unmanned Aerial Vehicle) detectors focus primarily on general challenge such as uneven distribution and occlusion. However, the neglect of scale challenges, which encompass scale variation and small objects, continues to hinder object detection in UAV images. Although existing works propose solutions, they are implicitly modeled and have redundant steps, so detection performance remains limited. And one specific work addressing the above scale challenges can help improve the performance of UAV image detectors. Compared to natural scenes, scale challenges in UAV images happen with problems of limited perception in comprehensive scales and poor robustness to small objects. We found that complementary learning is beneficial for the detection model to address the scale challenges. Therefore, the paper introduces it to form our scale-robust complementary learning network (SCLNet) in conjunction with the object detection model. The SCLNet consists of two implementations and a cooperation method. In detail, one implementation is based on our proposed scale-complementary decoder and scale-complementary loss function to explicitly extract complementary information as complement, named comprehensive-scale complementary learning (CSCL). Another implementation is based on our proposed contrastive complement network and contrastive complement loss function to explicitly guide the learning of small objects with the rich texture detail information of the large objects, named inter-scale contrastive complementary learning (ICCL). In addition, an end-to-end cooperation (ECoop) between two implementations and with the detection model is proposed to exploit each potential.
Related papers
- Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery [51.83786195178233]
We design a Knowledge Discovery Network (KDN) to implement the renormalization group theory in terms of efficient feature extraction.
Renormalized connection (RC) on the KDN enables synergistic focusing'' of multi-scale features.
RCs extend the multi-level feature's divide-and-conquer'' mechanism of the FPN-based detectors to a wide range of scale-preferred tasks.
arXiv Detail & Related papers (2024-09-09T13:56:22Z) - A Simple yet Effective Network based on Vision Transformer for
Camouflaged Object and Salient Object Detection [33.30644598646274]
We propose a simple yet effective network (SENet) based on vision Transformer (ViT)
To enhance the Transformer's ability to model local information, we propose a local information capture module (LICM)
We also propose a dynamic weighted loss (DW loss) based on Binary Cross-Entropy (BCE) and Intersection over Union (IoU) loss, which guides the network to pay more attention to those smaller and more difficult-to-find target objects.
arXiv Detail & Related papers (2024-02-29T07:29:28Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Dense Relation Distillation with Context-aware Aggregation for Few-Shot
Object Detection [18.04185751827619]
Few-shot object detection is challenging since the fine-grained feature of novel object can be easily overlooked with only a few data available.
We propose Dense Relation Distillation with Context-aware Aggregation (DCNet) to tackle the few-shot detection problem.
arXiv Detail & Related papers (2021-03-30T05:34:49Z) - Progressive Self-Guided Loss for Salient Object Detection [102.35488902433896]
We present a progressive self-guided loss function to facilitate deep learning-based salient object detection in images.
Our framework takes advantage of adaptively aggregated multi-scale features to locate and detect salient objects effectively.
arXiv Detail & Related papers (2021-01-07T07:33:38Z) - SyNet: An Ensemble Network for Object Detection in UAV Images [13.198689566654107]
In this paper, we propose an ensemble network, SyNet, that combines a multi-stage method with a single-stage one.
As building blocks, CenterNet and Cascade R-CNN with pretrained feature extractors are utilized along with an ensembling strategy.
We report the state of the art results obtained by our proposed solution on two different datasets.
arXiv Detail & Related papers (2020-12-23T21:38:32Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z) - Gradient-Induced Co-Saliency Detection [81.54194063218216]
Co-saliency detection (Co-SOD) aims to segment the common salient foreground in a group of relevant images.
In this paper, inspired by human behavior, we propose a gradient-induced co-saliency detection method.
arXiv Detail & Related papers (2020-04-28T08:40:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.