Deviations from maximal entanglement for eigenstates of the Sachdev-Ye-Kitaev model
- URL: http://arxiv.org/abs/2409.07043v1
- Date: Wed, 11 Sep 2024 06:22:41 GMT
- Title: Deviations from maximal entanglement for eigenstates of the Sachdev-Ye-Kitaev model
- Authors: Yichen Huang, Yi Tan, Norman Y. Yao,
- Abstract summary: We prove that for subsystems whose size is a constant fraction of the system size, the entanglement entropy deviates from the maximum entropy by at least a positive constant.
This result highlights the difference between the entanglement entropy of mid-spectrum eigenstates of the SYK model and that of random states.
- Score: 7.583316450848749
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider mid-spectrum eigenstates of the Sachdev-Ye-Kiteav (SYK) model. We prove that for subsystems whose size is a constant fraction of the system size, the entanglement entropy deviates from the maximum entropy by at least a positive constant. This result highlights the difference between the entanglement entropy of mid-spectrum eigenstates of the SYK model and that of random states.
Related papers
- Exceptional points in SSH-like models with hopping amplitude gradient [41.94295877935867]
Recent interest in exceptional points has led to re-examination of non-Hermitian generalizations of many physical models.
In such non-Hermitian systems, singular points called exceptional points (EPs) appear that are of interest for applications in super-resolution sensing systems and topological lasers.
It is found that while the existence of the EPs is due to the nonreciprocal couplings, the number, position, and order of the EPs can all be altered by the addition of the hopping amplitude gradient.
arXiv Detail & Related papers (2024-08-01T19:09:59Z) - Causal Modeling with Stationary Diffusions [89.94899196106223]
We learn differential equations whose stationary densities model a system's behavior under interventions.
We show that they generalize to unseen interventions on their variables, often better than classical approaches.
Our inference method is based on a new theoretical result that expresses a stationarity condition on the diffusion's generator in a reproducing kernel Hilbert space.
arXiv Detail & Related papers (2023-10-26T14:01:17Z) - Unbiasing time-dependent Variational Monte Carlo by projected quantum
evolution [44.99833362998488]
We analyze the accuracy and sample complexity of variational Monte Carlo approaches to simulate quantum systems classically.
We prove that the most used scheme, the time-dependent Variational Monte Carlo (tVMC), is affected by a systematic statistical bias.
We show that a different scheme based on the solution of an optimization problem at each time step is free from such problems.
arXiv Detail & Related papers (2023-05-23T17:38:10Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Quantum Entanglement in the Sachdev-Ye-Kitaev Model and its
Generalizations [5.623221917573403]
Entanglement is one of the most important concepts in quantum physics.
We present the study of entanglement entropy in the original SYK Model.
We consider the steady-state entanglement entropy of quantum many-body systems under repeated measurements.
arXiv Detail & Related papers (2022-03-03T04:54:10Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - On eigenstate thermalization in the SYK chain model [0.0]
Eigenstate thermalization hypothesis (ETH) explains how generic observables of individual isolated quantum systems in pure states can exhibit thermal behaviors.
We show that for two conventional few-body operators, the ensemble-averaged theory of the SYK chain model strictly satisfies ETH conditions.
arXiv Detail & Related papers (2021-04-12T08:50:24Z) - Entanglement Dynamics From Random Product States: Deviation From Maximal
Entanglement [2.741266294612776]
We study the entanglement dynamics of quantum many-body systems.
Our results highlight the difference between the entanglement generated by (chaotic) Hamiltonian dynamics and that of random states.
arXiv Detail & Related papers (2021-02-15T14:51:36Z) - Exact many-body scars and their stability in constrained quantum chains [55.41644538483948]
Quantum scars are non-thermal eigenstates characterized by low entanglement entropy.
We study the response of these exact quantum scars to perturbations by analysing the scaling of the fidelity susceptibility with system size.
arXiv Detail & Related papers (2020-11-16T19:05:50Z) - Eigenstate Entanglement Entropy in Random Quadratic Hamiltonians [0.0]
In integrable models, the volume-law coefficient depends on the subsystem fraction.
We show that the average entanglement entropy of eigenstates of the power-law random banded matrix model is close but not the same as the result for quadratic models.
arXiv Detail & Related papers (2020-06-19T18:01:15Z) - Towards quantum simulation of Sachdev-Ye-Kitaev model [5.931069258860319]
We study a simplified version of the Sachdev-Ye-Kitaev (SYK) model with real interactions by exact diagonalization.
A quantum phase transition from a chaotic state to an integrable state is observed by increasing the discrete separation.
arXiv Detail & Related papers (2020-03-03T14:18:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.