Tensor product random matrix theory
- URL: http://arxiv.org/abs/2404.10919v2
- Date: Wed, 30 Oct 2024 18:29:00 GMT
- Title: Tensor product random matrix theory
- Authors: Alexander Altland, Joaquim Telles de Miranda, Tobias Micklitz,
- Abstract summary: We introduce a real-time field theory approach to the evolution of correlated quantum systems.
We describe the full range of such crossover dynamics, from initial product states to a maximum entropy ergodic state.
- Score: 39.58317527488534
- License:
- Abstract: The evolution of complex correlated quantum systems such as random circuit networks is governed by the dynamical buildup of both entanglement and entropy. We here introduce a real-time field theory approach -- essentially a fusion of the $G \Sigma$-functional of the SYK-model and the field theory of disordered systems -- enigneered to microscopically describe the full range of such crossover dynamics: from initial product states to a maximum entropy ergodic state. To showcase this approach in the simplest nontrivial setting, we consider a tensor product of coupled random matrices, and compare to exact diagonalization.
Related papers
- Entanglement and the density matrix renormalisation group in the generalised Landau paradigm [0.0]
We leverage the interplay between gapped phases and dualities of symmetric one-dimensional quantum lattice models.
For every phase in the phase diagram, the dual representation of the ground state that breaks all symmetries minimises both the entanglement entropy and the required number of variational parameters.
Our work testifies to the usefulness of generalised non-invertible symmetries and their formal category theoretic description for the nuts and bolts simulation of strongly correlated systems.
arXiv Detail & Related papers (2024-08-12T17:51:00Z) - Equivalence of dynamics of disordered quantum ensembles and semi-infinite lattices [44.99833362998488]
We develop a formalism for mapping the exact dynamics of an ensemble of disordered quantum systems onto the dynamics of a single particle propagating along a semi-infinite lattice.
This mapping provides a geometric interpretation on the loss of coherence when averaging over the ensemble and allows computation of the exact dynamics of the entire disordered ensemble in a single simulation.
arXiv Detail & Related papers (2024-06-25T18:13:38Z) - Theory of mobility edge and non-ergodic extended phase in coupled random
matrices [18.60614534900842]
The mobility edge, as a central concept in disordered models for localization-delocalization transitions, has rarely been discussed in the context of random matrix theory.
We show that their overlapped spectra and un-overlapped spectra exhibit totally different scaling behaviors, which can be used to construct tunable mobility edges.
Our model provides a general framework to realize the mobility edges and non-ergodic phases in a controllable way in RMT.
arXiv Detail & Related papers (2023-11-15T01:43:37Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Dissipative quantum dynamics, phase transitions and non-Hermitian random
matrices [0.0]
We work in the framework of the dissipative Dicke model which is archetypal of symmetry-breaking phase transitions in open quantum systems.
We establish that the Liouvillian describing the quantum dynamics exhibits distinct spectral features of integrable and chaotic character.
Our approach can be readily adapted for classifying the nature of quantum dynamics across dissipative critical points in other open quantum systems.
arXiv Detail & Related papers (2021-12-10T19:00:01Z) - Non-Markovian Stochastic Schr\"odinger Equation: Matrix Product State
Approach to the Hierarchy of Pure States [65.25197248984445]
We derive a hierarchy of matrix product states (HOMPS) for non-Markovian dynamics in open finite temperature.
The validity and efficiency of HOMPS is demonstrated for the spin-boson model and long chains where each site is coupled to a structured, strongly non-Markovian environment.
arXiv Detail & Related papers (2021-09-14T01:47:30Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - Chaos and Ergodicity in Extended Quantum Systems with Noisy Driving [0.0]
We study the time evolution operator in a family of local quantum circuits with random fields in a fixed direction.
We show that for the systems under consideration the generalised spectral form factor can be expressed in terms of dynamical correlation functions.
This also provides a connection between the many-body Thouless time $tau_rm th$ -- the time at which the generalised spectral form factor starts following the random matrix theory prediction -- and the conservation laws of the system.
arXiv Detail & Related papers (2020-10-23T15:54:55Z) - Classical Models of Entanglement in Monitored Random Circuits [0.0]
We show the evolution of entanglement entropy in quantum circuits composed of Haar-random gates and projective measurements.
We also establish a Markov model for the evolution of the zeroth R'enyi entropy and demonstrate that, in one dimension and in the limit of large local dimension, it coincides with the corresponding second-R'enyi-entropy model.
arXiv Detail & Related papers (2020-04-14T18:00:14Z) - From stochastic spin chains to quantum Kardar-Parisi-Zhang dynamics [68.8204255655161]
We introduce the asymmetric extension of the Quantum Symmetric Simple Exclusion Process.
We show that the time-integrated current of fermions defines a height field which exhibits a quantum non-linear dynamics.
arXiv Detail & Related papers (2020-01-13T14:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.