Cross-Refine: Improving Natural Language Explanation Generation by Learning in Tandem
- URL: http://arxiv.org/abs/2409.07123v1
- Date: Wed, 11 Sep 2024 09:21:20 GMT
- Title: Cross-Refine: Improving Natural Language Explanation Generation by Learning in Tandem
- Authors: Qianli Wang, Tatiana Anikina, Nils Feldhus, Simon Ostermann, Sebastian Möller, Vera Schmitt,
- Abstract summary: Like humans, large language models (LLMs) might not always produce optimal explanations on first attempt.
We introduce Cross-Refine, which employs role modeling by deploying two LLMs as generator and critic, respectively.
The generator outputs a first NLE and then refines this initial explanation using feedback and suggestions provided by the critic.
- Score: 14.537146664859902
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Natural language explanations (NLEs) are vital for elucidating the reasoning behind large language model (LLM) decisions. Many techniques have been developed to generate NLEs using LLMs. However, like humans, LLMs might not always produce optimal NLEs on first attempt. Inspired by human learning processes, we introduce Cross-Refine, which employs role modeling by deploying two LLMs as generator and critic, respectively. The generator outputs a first NLE and then refines this initial explanation using feedback and suggestions provided by the critic. Cross-Refine does not require any supervised training data or additional training. We validate Cross-Refine across three NLP tasks using three state-of-the-art open-source LLMs through automatic and human evaluation. We select Self-Refine (Madaan et al., 2023) as the baseline, which only utilizes self-feedback to refine the explanations. Our findings from automatic evaluation and a user study indicate that Cross-Refine outperforms Self-Refine. Meanwhile, Cross-Refine can perform effectively with less powerful LLMs, whereas Self-Refine only yields strong results with ChatGPT. Additionally, we conduct an ablation study to assess the importance of feedback and suggestions. Both of them play an important role in refining explanations. We further evaluate Cross-Refine on a bilingual dataset in English and German.
Related papers
- SNAP: Unlearning Selective Knowledge in Large Language Models with Negative Instructions [37.172662930947446]
Instruction-following large language models (LLMs) inadvertently disclose personal or copyrighted information.
We propose SNAP, an innovative framework designed to selectively unlearn information.
We evaluate our framework on various NLP benchmarks and demonstrate that our approach retains the original LLM capabilities.
arXiv Detail & Related papers (2024-06-18T06:54:05Z) - Unlocking the Potential of Large Language Models for Explainable
Recommendations [55.29843710657637]
It remains uncertain what impact replacing the explanation generator with the recently emerging large language models (LLMs) would have.
In this study, we propose LLMXRec, a simple yet effective two-stage explainable recommendation framework.
By adopting several key fine-tuning techniques, controllable and fluent explanations can be well generated.
arXiv Detail & Related papers (2023-12-25T09:09:54Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
Recent large language models (LLM) are leveraging human feedback to improve their generation quality.
We propose LLMRefine, an inference time optimization method to refine LLM's output.
We conduct experiments on three text generation tasks, including machine translation, long-form question answering (QA), and topical summarization.
LLMRefine consistently outperforms all baseline approaches, achieving improvements up to 1.7 MetricX points on translation tasks, 8.1 ROUGE-L on ASQA, 2.2 ROUGE-L on topical summarization.
arXiv Detail & Related papers (2023-11-15T19:52:11Z) - Knowing What LLMs DO NOT Know: A Simple Yet Effective Self-Detection Method [36.24876571343749]
Large Language Models (LLMs) have shown great potential in Natural Language Processing (NLP) tasks.
Recent literature reveals that LLMs generate nonfactual responses intermittently.
We propose a novel self-detection method to detect which questions that a LLM does not know that are prone to generate nonfactual results.
arXiv Detail & Related papers (2023-10-27T06:22:14Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z) - Aligning Large Language Models with Human: A Survey [53.6014921995006]
Large Language Models (LLMs) trained on extensive textual corpora have emerged as leading solutions for a broad array of Natural Language Processing (NLP) tasks.
Despite their notable performance, these models are prone to certain limitations such as misunderstanding human instructions, generating potentially biased content, or factually incorrect information.
This survey presents a comprehensive overview of these alignment technologies, including the following aspects.
arXiv Detail & Related papers (2023-07-24T17:44:58Z) - Self-Refine: Iterative Refinement with Self-Feedback [62.78755306241981]
Self-Refine is an approach for improving initial outputs from large language models (LLMs) through iterative feedback and refinement.
We evaluate Self-Refine across 7 diverse tasks, ranging from dialog response generation to mathematical reasoning, using state-of-the-art (GPT-3.5, ChatGPT, and GPT-4) LLMs.
Our work demonstrates that even state-of-the-art LLMs like GPT-4 can be further improved at test time using our simple, standalone approach.
arXiv Detail & Related papers (2023-03-30T18:30:01Z) - Training Language Models with Language Feedback at Scale [50.70091340506957]
We introduce learning from Language Feedback (ILF), a new approach that utilizes more informative language feedback.
ILF consists of three steps that are applied iteratively: first, conditioning the language model on the input, an initial LM output, and feedback to generate refinements.
We show theoretically that ILF can be viewed as Bayesian Inference, similar to Reinforcement Learning from human feedback.
arXiv Detail & Related papers (2023-03-28T17:04:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.