論文の概要: Zero-Shot Text-to-Speech as Golden Speech Generator: A Systematic Framework and its Applicability in Automatic Pronunciation Assessment
- arxiv url: http://arxiv.org/abs/2409.07151v1
- Date: Wed, 11 Sep 2024 09:55:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 15:02:58.601088
- Title: Zero-Shot Text-to-Speech as Golden Speech Generator: A Systematic Framework and its Applicability in Automatic Pronunciation Assessment
- Title(参考訳): ゴールデン・スピーチ・ジェネレータとしてのゼロショットテキスト・音声:システム・フレームワークとその自動発音評価への適用性
- Authors: Tien-Hong Lo, Meng-Ting Tsai, Berlin Chen,
- Abstract要約: 第二言語(L2)学習者は黄金の音声を模倣することで発音を改善することができる。
本研究では,ゼロショット音声合成(ZS-TTS)技術を用いて学習者固有のゴールデンスピーチを,L2学習者の発音習熟度を測定するための有効な指標として活用できるという仮説を考察した。
- 参考スコア(独自算出の注目度): 5.624555343386606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Second language (L2) learners can improve their pronunciation by imitating golden speech, especially when the speech that aligns with their respective speech characteristics. This study explores the hypothesis that learner-specific golden speech generated with zero-shot text-to-speech (ZS-TTS) techniques can be harnessed as an effective metric for measuring the pronunciation proficiency of L2 learners. Building on this exploration, the contributions of this study are at least two-fold: 1) design and development of a systematic framework for assessing the ability of a synthesis model to generate golden speech, and 2) in-depth investigations of the effectiveness of using golden speech in automatic pronunciation assessment (APA). Comprehensive experiments conducted on the L2-ARCTIC and Speechocean762 benchmark datasets suggest that our proposed modeling can yield significant performance improvements with respect to various assessment metrics in relation to some prior arts. To our knowledge, this study is the first to explore the role of golden speech in both ZS-TTS and APA, offering a promising regime for computer-assisted pronunciation training (CAPT).
- Abstract(参考訳): 第二言語(L2)学習者は、黄金の音声を模倣することで発音を改善することができる。
本研究では,ゼロショット音声合成(ZS-TTS)技術を用いて学習者固有のゴールデンスピーチを,L2学習者の発音習熟度を測定するための有効な指標として活用できるという仮説を考察した。
この調査に基づいて、この研究の貢献は少なくとも2倍である。
1)黄金音生成のための合成モデルの能力を評価するための体系的枠組みの設計と開発
2) 自動発音評価(APA)における黄金音の使用の有効性について, 詳細な調査を行った。
L2-ARCTICおよびSpeechocean762ベンチマークデータセットで実施した総合的な実験から,提案手法は,いくつかの先行技術に関する様々な評価指標に対して,大幅な性能向上をもたらす可能性が示唆された。
本研究は,ZS-TTSとAPAにおけるゴールデンスピーチの役割を初めて探求し,コンピュータ支援発音訓練(CAPT)に期待できる体制を提供する。
関連論文リスト
- WavChat: A Survey of Spoken Dialogue Models [66.82775211793547]
GPT-4oのようなシステムで実証された音声対話モデルの最近の進歩は、音声領域において大きな注目を集めている。
これらの高度な音声対話モデルは、音声、音楽、その他の音声関連の特徴を理解するだけでなく、音声のスタイリスティックな特徴や音節的な特徴も捉える。
音声対話システムの進歩にもかかわらず、これらのシステムを体系的に組織化し分析する包括的調査が欠如している。
論文 参考訳(メタデータ) (2024-11-15T04:16:45Z) - Speechworthy Instruction-tuned Language Models [71.8586707840169]
提案手法は,学習の促進と嗜好の両面において,一般的な命令調整型LLMの音声適合性の向上を図っている。
我々は,各手法が生成した応答の音声適合性向上にどのように貢献するかを示すために,語彙的,構文的,定性的な分析を共有する。
論文 参考訳(メタデータ) (2024-09-23T02:34:42Z) - One model to rule them all ? Towards End-to-End Joint Speaker
Diarization and Speech Recognition [50.055765860343286]
本稿では,共同話者ダイアリゼーションと音声認識のための新しい枠組みを提案する。
このフレームワークはSLIDARと呼ばれ、任意の長さの入力を処理でき、任意の数の話者を処理できる。
AMIコーパスからの単調録音実験により, 近接話者と遠距離話者の両方の発話シナリオにおける手法の有効性が確認された。
論文 参考訳(メタデータ) (2023-10-02T23:03:30Z) - Towards Joint Modeling of Dialogue Response and Speech Synthesis based
on Large Language Model [8.180382743037082]
本稿では,AI音声対話システムの構築の可能性について考察する。
論文 参考訳(メタデータ) (2023-09-20T01:48:27Z) - Incorporating L2 Phonemes Using Articulatory Features for Robust Speech
Recognition [2.8360662552057323]
本研究は,韓国語音素を指すL2音素の効率的な組み込みについて,音声特徴分析を用いて検討した。
格子のない最大相互情報(LF-MMI)の目的をエンドツーエンドに使い、音響モデルを訓練し、複数の発音候補のうちの1つを調整・予測する。
実験結果から,提案手法は韓国語L2音声のASR精度をL1音声データのみに基づく訓練により向上させることが示された。
論文 参考訳(メタデータ) (2023-06-05T01:55:33Z) - A Comparative Study of Pre-trained Speech and Audio Embeddings for
Speech Emotion Recognition [0.0]
音声感情認識(SER)には、カスタマーコールの動的分析、メンタルヘルスアセスメント、パーソナライズされた言語学習など、幅広い応用がある。
事前学習されたモデル(PTM)は、音声と音声の領域において大きな可能性を秘めている。これらのモデルから活用された埋め込みは、様々な下流タスクにおけるアプリケーションによるアルゴリズム学習のインプットとして機能する。
本研究では,4つの音声感情データセット(CREMA-D,TESS,SAVEE,Emo-DB)を用いて3つのアルゴリズムを学習し,実験的な分析を行った。
本研究の結果から, 組込みを訓練したアルゴリズムにより, 最高の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-04-22T19:56:35Z) - L2 proficiency assessment using self-supervised speech representations [35.70742768910494]
本研究は,音声認識を必要とせず,自己教師型音声表現に基づく初期分析を大規模習熟度試験に拡張する。
自己教師型wav2vec 2.0システムの性能は、高性能の手作り評価システムとBERTベースのテキストシステムと比較される。
wav2vec 2.0ベースのシステムは応答の性質に敏感であることがわかったが、音声の書き起こしを必要とするシステムと同等の性能を持つように構成することができる。
論文 参考訳(メタデータ) (2022-11-16T11:47:20Z) - Transcribe-to-Diarize: Neural Speaker Diarization for Unlimited Number
of Speakers using End-to-End Speaker-Attributed ASR [44.181755224118696]
Transcribe-to-Diarizeは、エンド・ツー・エンド(E2E)話者による自動音声認識(SA-ASR)を用いたニューラルスピーカーダイアリゼーションの新しいアプローチである。
提案手法は,話者数不明の場合に,既存の話者ダイアリゼーション法よりも高いダイアリゼーション誤差率を実現する。
論文 参考訳(メタデータ) (2021-10-07T02:48:49Z) - On Prosody Modeling for ASR+TTS based Voice Conversion [82.65378387724641]
音声変換において、最新の音声変換チャレンジ(VCC)2020における有望な結果を示すアプローチは、まず、ソース音声を基礎となる言語内容に書き起こすために、自動音声認識(ASR)モデルを使用することである。
このようなパラダイムはASR+TTSと呼ばれ、音声の自然性と変換の類似性において重要な役割を果たす韻律のモデル化を見落としている。
本稿では,ターゲットテキスト予測(TTP)と呼ばれる,ターゲット話者に依存した言語表現から直接韻律を予測することを提案する。
論文 参考訳(メタデータ) (2021-07-20T13:30:23Z) - SPLAT: Speech-Language Joint Pre-Training for Spoken Language
Understanding [61.02342238771685]
音声理解には、入力音響信号を解析してその言語内容を理解し、予測するモデルが必要である。
大規模無注釈音声やテキストからリッチな表現を学習するために,様々な事前学習手法が提案されている。
音声と言語モジュールを協調的に事前学習するための,新しい半教師付き学習フレームワークであるSPLATを提案する。
論文 参考訳(メタデータ) (2020-10-05T19:29:49Z) - Semi-supervised Learning for Multi-speaker Text-to-speech Synthesis
Using Discrete Speech Representation [125.59372403631006]
マルチ話者テキスト音声(TTS)のための半教師付き学習手法を提案する。
マルチスピーカTTSモデルは、離散音声表現を備えたエンコーダデコーダフレームワークを用いて、未転写音声から学習することができる。
提案した半教師あり学習手法は,音声データの一部がうるさい場合にも有効であることがわかった。
論文 参考訳(メタデータ) (2020-05-16T15:47:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。