Is merging worth it? Securely evaluating the information gain for causal dataset acquisition
- URL: http://arxiv.org/abs/2409.07215v1
- Date: Wed, 11 Sep 2024 12:17:01 GMT
- Title: Is merging worth it? Securely evaluating the information gain for causal dataset acquisition
- Authors: Jake Fawkes, Lucile Ter-Minassian, Desi Ivanova, Uri Shalit, Chris Holmes,
- Abstract summary: We introduce the first cryptographically secure information-theoretic approach for quantifying the value of a merge.
We do this by evaluating the Expected Information Gain (EIG) and utilising multi-party computation to ensure it can be securely computed without revealing any raw data.
- Score: 9.373086204998348
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Merging datasets across institutions is a lengthy and costly procedure, especially when it involves private information. Data hosts may therefore want to prospectively gauge which datasets are most beneficial to merge with, without revealing sensitive information. For causal estimation this is particularly challenging as the value of a merge will depend not only on the reduction in epistemic uncertainty but also the improvement in overlap. To address this challenge, we introduce the first cryptographically secure information-theoretic approach for quantifying the value of a merge in the context of heterogeneous treatment effect estimation. We do this by evaluating the Expected Information Gain (EIG) and utilising multi-party computation to ensure it can be securely computed without revealing any raw data. As we demonstrate, this can be used with differential privacy (DP) to ensure privacy requirements whilst preserving more accurate computation than naive DP alone. To the best of our knowledge, this work presents the first privacy-preserving method for dataset acquisition tailored to causal estimation. We demonstrate the effectiveness and reliability of our method on a range of simulated and realistic benchmarks. The code is available anonymously.
Related papers
- RASE: Efficient Privacy-preserving Data Aggregation against Disclosure Attacks for IoTs [2.1765174838950494]
We study the new paradigm for collecting and protecting the data produced by ever-increasing sensor devices.
Most previous studies on co-design of data aggregation and privacy preservation assume that a trusted fusion center adheres to privacy regimes.
We propose a novel paradigm (called RASE), which can be generalized into a 3-step sequential procedure, noise addition, followed by random permutation, and then parameter estimation.
arXiv Detail & Related papers (2024-05-31T15:21:38Z) - Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
Data-dependent privacy accounting frameworks such as per-instance differential privacy (pDP) and Fisher information loss (FIL) confer fine-grained privacy guarantees for individuals in a fixed training dataset.
We propose simple modifications of the Gaussian mechanism with bounded support, showing that they amplify privacy guarantees under data-dependent accounting.
arXiv Detail & Related papers (2024-03-07T21:22:07Z) - Share Your Representation Only: Guaranteed Improvement of the
Privacy-Utility Tradeoff in Federated Learning [47.042811490685324]
Mitigating the risk of this information leakage, using state of the art differentially private algorithms, also does not come for free.
In this paper, we consider a representation learning objective that various parties collaboratively refine on a federated model, with differential privacy guarantees.
We observe a significant performance improvement over the prior work under the same small privacy budget.
arXiv Detail & Related papers (2023-09-11T14:46:55Z) - Practical Privacy-Preserving Gaussian Process Regression via Secret
Sharing [23.80837224347696]
This paper proposes a privacy-preserving GPR method based on secret sharing (SS)
We derive a new SS-based exponentiation operation through the idea of 'confusion-correction' and construct an SS-based matrix inversion algorithm based on Cholesky decomposition.
Empirical results show that our proposed method can achieve reasonable accuracy and efficiency under the premise of preserving data privacy.
arXiv Detail & Related papers (2023-06-26T08:17:51Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
We propose a new differential privacy paradigm called estimate-verify-release (EVR)
EVR paradigm first estimates the privacy parameter of a mechanism, then verifies whether it meets this guarantee, and finally releases the query output.
Our empirical evaluation shows the newly proposed EVR paradigm improves the utility-privacy tradeoff for privacy-preserving machine learning.
arXiv Detail & Related papers (2023-04-17T00:38:01Z) - Analyzing Privacy Leakage in Machine Learning via Multiple Hypothesis
Testing: A Lesson From Fano [83.5933307263932]
We study data reconstruction attacks for discrete data and analyze it under the framework of hypothesis testing.
We show that if the underlying private data takes values from a set of size $M$, then the target privacy parameter $epsilon$ can be $O(log M)$ before the adversary gains significant inferential power.
arXiv Detail & Related papers (2022-10-24T23:50:12Z) - Smooth Anonymity for Sparse Graphs [69.1048938123063]
differential privacy has emerged as the gold standard of privacy, however, when it comes to sharing sparse datasets.
In this work, we consider a variation of $k$-anonymity, which we call smooth-$k$-anonymity, and design simple large-scale algorithms that efficiently provide smooth-$k$-anonymity.
arXiv Detail & Related papers (2022-07-13T17:09:25Z) - Robust and Differentially Private Mean Estimation [40.323756738056616]
Differential privacy has emerged as a standard requirement in a variety of applications ranging from the U.S. Census to data collected in commercial devices.
An increasing number of such databases consist of data from multiple sources, not all of which can be trusted.
This leaves existing private analyses vulnerable to attacks by an adversary who injects corrupted data.
arXiv Detail & Related papers (2021-02-18T05:02:49Z) - SPEED: Secure, PrivatE, and Efficient Deep learning [2.283665431721732]
We introduce a deep learning framework able to deal with strong privacy constraints.
Based on collaborative learning, differential privacy and homomorphic encryption, the proposed approach advances state-of-the-art.
arXiv Detail & Related papers (2020-06-16T19:31:52Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users.
An adversary may still be able to infer the private training data by attacking the released model.
Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models.
arXiv Detail & Related papers (2020-05-01T04:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.