3DGCQA: A Quality Assessment Database for 3D AI-Generated Contents
- URL: http://arxiv.org/abs/2409.07236v2
- Date: Thu, 12 Sep 2024 02:17:06 GMT
- Title: 3DGCQA: A Quality Assessment Database for 3D AI-Generated Contents
- Authors: Yingjie Zhou, Zicheng Zhang, Farong Wen, Jun Jia, Yanwei Jiang, Xiaohong Liu, Xiongkuo Min, Guangtao Zhai,
- Abstract summary: This paper introduces a novel 3DGC quality assessment dataset, 3DGCQA, built using 7 representative Text-to-3D generation methods.
The visualization intuitively reveals the presence of 6 common distortion categories in the generated 3DGCs.
subjective quality assessment is conducted by evaluators, whose ratings reveal significant variation in quality across different generation methods.
Several objective quality assessment algorithms are tested on the 3DGCQA dataset.
- Score: 50.730468291265886
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although 3D generated content (3DGC) offers advantages in reducing production costs and accelerating design timelines, its quality often falls short when compared to 3D professionally generated content. Common quality issues frequently affect 3DGC, highlighting the importance of timely and effective quality assessment. Such evaluations not only ensure a higher standard of 3DGCs for end-users but also provide critical insights for advancing generative technologies. To address existing gaps in this domain, this paper introduces a novel 3DGC quality assessment dataset, 3DGCQA, built using 7 representative Text-to-3D generation methods. During the dataset's construction, 50 fixed prompts are utilized to generate contents across all methods, resulting in the creation of 313 textured meshes that constitute the 3DGCQA dataset. The visualization intuitively reveals the presence of 6 common distortion categories in the generated 3DGCs. To further explore the quality of the 3DGCs, subjective quality assessment is conducted by evaluators, whose ratings reveal significant variation in quality across different generation methods. Additionally, several objective quality assessment algorithms are tested on the 3DGCQA dataset. The results expose limitations in the performance of existing algorithms and underscore the need for developing more specialized quality assessment methods. To provide a valuable resource for future research and development in 3D content generation and quality assessment, the dataset has been open-sourced in https://github.com/zyj-2000/3DGCQA.
Related papers
- Benchmarking and Learning Multi-Dimensional Quality Evaluator for Text-to-3D Generation [26.0726219629689]
Text-to-3D generation has achieved remarkable progress in recent years, yet evaluating these methods remains challenging.
Existing benchmarks lack fine-grained evaluation on different prompt categories and evaluation dimensions.
We first propose a comprehensive benchmark named MATE-3D.
The benchmark contains eight well-designed prompt categories that cover single and multiple object generation, resulting in 1,280 generated textured meshes.
arXiv Detail & Related papers (2024-12-15T12:41:44Z) - A Survey On Text-to-3D Contents Generation In The Wild [5.875257756382124]
3D content creation plays a vital role in various applications, such as gaming, robotics simulation, and virtual reality.
To address this challenge, text-to-3D generation technologies have emerged as a promising solution for automating 3D creation.
arXiv Detail & Related papers (2024-05-15T15:23:22Z) - A Comprehensive Survey on 3D Content Generation [148.434661725242]
3D content generation shows both academic and practical values.
New taxonomy is proposed that categorizes existing approaches into three types: 3D native generative methods, 2D prior-based 3D generative methods, and hybrid 3D generative methods.
arXiv Detail & Related papers (2024-02-02T06:20:44Z) - Activating Frequency and ViT for 3D Point Cloud Quality Assessment
without Reference [0.49157446832511503]
We propose no-reference quality metric of a given 3D-PC.
To map the input attributes to quality score, we use a light-weight hybrid deep model; combined of Deformable Convolutional Network (DCN) and Vision Transformers (ViT)
The results show that our approach outperforms state-of-the-art NR-PCQA measures and even some FR-PCQA on PointXR.
arXiv Detail & Related papers (2023-12-10T19:13:34Z) - T$^3$Bench: Benchmarking Current Progress in Text-to-3D Generation [52.029698642883226]
Methods in text-to-3D leverage powerful pretrained diffusion models to optimize NeRF.
Most studies evaluate their results with subjective case studies and user experiments.
We introduce T$3$Bench, the first comprehensive text-to-3D benchmark.
arXiv Detail & Related papers (2023-10-04T17:12:18Z) - GMS-3DQA: Projection-based Grid Mini-patch Sampling for 3D Model Quality
Assessment [82.93561866101604]
Previous projection-based 3DQA methods directly extract features from multi-projections to ensure quality prediction accuracy.
We propose a no-reference (NR) projection-based textitunderlineGrid underlineMini-patch underlineSampling underline3D Model underlineQuality underlineAssessment (GMS-3DQA) method.
The proposed GMS-3DQA requires far less computational resources and inference time than other 3D
arXiv Detail & Related papers (2023-06-09T03:53:12Z) - EEP-3DQA: Efficient and Effective Projection-based 3D Model Quality
Assessment [58.16279881415622]
It is difficult to perform an efficient module to extract quality-aware features of 3D models.
We develop a no-reference (NR) underlineEfficient and underlineEffective underlineProjection-based underline3D Model underlineQuality underlineAssessment (textbfEEP-3DQA) method.
The proposed EEP-3DQA and EEP-3DQA-t (tiny version) achieve
arXiv Detail & Related papers (2023-02-17T06:14:37Z) - Blind Quality Assessment of 3D Dense Point Clouds with Structure Guided
Resampling [71.68672977990403]
We propose an objective point cloud quality index with Structure Guided Resampling (SGR) to automatically evaluate the perceptually visual quality of 3D dense point clouds.
The proposed SGR is a general-purpose blind quality assessment method without the assistance of any reference information.
arXiv Detail & Related papers (2022-08-31T02:42:55Z) - No-Reference Quality Assessment for Colored Point Cloud and Mesh Based
on Natural Scene Statistics [36.017914479449864]
We propose an NSS-based no-reference quality assessment metric for colored 3D models.
Our method is mainly validated on the colored point cloud quality assessment database (SJTU-PCQA) and the colored mesh quality assessment database (CMDM)
arXiv Detail & Related papers (2021-07-05T14:03:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.