Eval3D: Interpretable and Fine-grained Evaluation for 3D Generation
- URL: http://arxiv.org/abs/2504.18509v1
- Date: Fri, 25 Apr 2025 17:22:05 GMT
- Title: Eval3D: Interpretable and Fine-grained Evaluation for 3D Generation
- Authors: Shivam Duggal, Yushi Hu, Oscar Michel, Aniruddha Kembhavi, William T. Freeman, Noah A. Smith, Ranjay Krishna, Antonio Torralba, Ali Farhadi, Wei-Chiu Ma,
- Abstract summary: We introduce Eval3D, a fine-grained, interpretable evaluation tool that can faithfully evaluate the quality of generated 3D assets.<n>Our key observation is that many desired properties of 3D generation, such as semantic and geometric consistency, can be effectively captured.<n>Compared to prior work, Eval3D provides pixel-wise measurement, enables accurate 3D spatial feedback, and aligns more closely with human judgments.
- Score: 134.53804996949287
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the unprecedented progress in the field of 3D generation, current systems still often fail to produce high-quality 3D assets that are visually appealing and geometrically and semantically consistent across multiple viewpoints. To effectively assess the quality of the generated 3D data, there is a need for a reliable 3D evaluation tool. Unfortunately, existing 3D evaluation metrics often overlook the geometric quality of generated assets or merely rely on black-box multimodal large language models for coarse assessment. In this paper, we introduce Eval3D, a fine-grained, interpretable evaluation tool that can faithfully evaluate the quality of generated 3D assets based on various distinct yet complementary criteria. Our key observation is that many desired properties of 3D generation, such as semantic and geometric consistency, can be effectively captured by measuring the consistency among various foundation models and tools. We thus leverage a diverse set of models and tools as probes to evaluate the inconsistency of generated 3D assets across different aspects. Compared to prior work, Eval3D provides pixel-wise measurement, enables accurate 3D spatial feedback, and aligns more closely with human judgments. We comprehensively evaluate existing 3D generation models using Eval3D and highlight the limitations and challenges of current models.
Related papers
- 3DGen-Bench: Comprehensive Benchmark Suite for 3D Generative Models [94.48803082248872]
3D generation is experiencing rapid advancements, while the development of 3D evaluation has not kept pace.<n>We develop a large-scale human preference dataset 3DGen-Bench.<n>We then train a CLIP-based scoring model, 3DGen-Score, and a MLLM-based automatic evaluator, 3DGen-Eval.
arXiv Detail & Related papers (2025-03-27T17:53:00Z) - 3DGCQA: A Quality Assessment Database for 3D AI-Generated Contents [50.730468291265886]
This paper introduces a novel 3DGC quality assessment dataset, 3DGCQA, built using 7 representative Text-to-3D generation methods.
The visualization intuitively reveals the presence of 6 common distortion categories in the generated 3DGCs.
subjective quality assessment is conducted by evaluators, whose ratings reveal significant variation in quality across different generation methods.
Several objective quality assessment algorithms are tested on the 3DGCQA dataset.
arXiv Detail & Related papers (2024-09-11T12:47:40Z) - Deep Geometric Moments Promote Shape Consistency in Text-to-3D Generation [27.43973967994717]
MT3D is a text-to-3D generative model that leverages a high-fidelity 3D object to overcome viewpoint bias.<n>By incorporating geometric details from a 3D asset, MT3D enables the creation of diverse and geometrically consistent objects.
arXiv Detail & Related papers (2024-08-12T06:25:44Z) - Retrieval-Augmented Score Distillation for Text-to-3D Generation [30.57225047257049]
We introduce novel framework for retrieval-based quality enhancement in text-to-3D generation.
We conduct extensive experiments to demonstrate that ReDream exhibits superior quality with increased geometric consistency.
arXiv Detail & Related papers (2024-02-05T12:50:30Z) - En3D: An Enhanced Generative Model for Sculpting 3D Humans from 2D
Synthetic Data [36.51674664590734]
We present En3D, an enhanced izable scheme for high-qualityd 3D human avatars.
Unlike previous works that rely on scarce 3D datasets or limited 2D collections with imbalance viewing angles and pose priors, our approach aims to develop a zero-shot 3D capable of producing 3D humans.
arXiv Detail & Related papers (2024-01-02T12:06:31Z) - SOGDet: Semantic-Occupancy Guided Multi-view 3D Object Detection [19.75965521357068]
We propose a novel approach called SOGDet (Semantic-Occupancy Guided Multi-view 3D Object Detection) to improve the accuracy of 3D object detection.
Our results show that SOGDet consistently enhance the performance of three baseline methods in terms of nuScenes Detection Score (NDS) and mean Average Precision (mAP)
This indicates that the combination of 3D object detection and 3D semantic occupancy leads to a more comprehensive perception of the 3D environment, thereby aiding build more robust autonomous driving systems.
arXiv Detail & Related papers (2023-08-26T07:38:21Z) - Pushing the Limits of 3D Shape Generation at Scale [65.24420181727615]
We present a significant breakthrough in 3D shape generation by scaling it to unprecedented dimensions.
We have developed a model with an astounding 3.6 billion trainable parameters, establishing it as the largest 3D shape generation model to date, named Argus-3D.
arXiv Detail & Related papers (2023-06-20T13:01:19Z) - InOR-Net: Incremental 3D Object Recognition Network for Point Cloud
Representation [51.121731449575776]
We develop a novel Incremental 3D Object Recognition Network (i.e., InOR-Net) to recognize new classes of 3D objects continuously.
Specifically, a category-guided geometric reasoning is proposed to reason local geometric structures with distinctive 3D characteristics of each class.
We then propose a novel critic-induced geometric attention mechanism to distinguish which 3D geometric characteristics within each class are beneficial to overcome the catastrophic forgetting on old classes of 3D objects.
arXiv Detail & Related papers (2023-02-20T10:30:16Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
We learn geometry-guided depth estimation with projective modeling to advance monocular 3D object detection.
Specifically, a principled geometry formula with projective modeling of 2D and 3D depth predictions in the monocular 3D object detection network is devised.
Our method remarkably improves the detection performance of the state-of-the-art monocular-based method without extra data by 2.80% on the moderate test setting.
arXiv Detail & Related papers (2021-07-29T12:30:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.