論文の概要: Alignment of Diffusion Models: Fundamentals, Challenges, and Future
- arxiv url: http://arxiv.org/abs/2409.07253v1
- Date: Wed, 11 Sep 2024 13:21:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 14:35:46.029941
- Title: Alignment of Diffusion Models: Fundamentals, Challenges, and Future
- Title(参考訳): 拡散モデルのアライメント:基礎・課題・将来
- Authors: Buhua Liu, Shitong Shao, Bao Li, Lichen Bai, Haoyi Xiong, James Kwok, Sumi Helal, Zeke Xie,
- Abstract要約: 拡散モデルは生成モデルの主要なパラダイムとして登場し、様々な応用に優れています。
彼らの成功にもかかわらず、これらのモデルは、しばしば人間の意図に反し、テキストのプロンプトと一致しない、あるいは望ましい特性を持たない出力を生成する。
大規模言語モデルの調整におけるアライメントの成功に触発された最近の研究は、人間の期待や嗜好と拡散モデルの整合性について研究している。
- 参考スコア(独自算出の注目度): 22.092920035562873
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have emerged as the leading paradigm in generative modeling, excelling in various applications. Despite their success, these models often misalign with human intentions, generating outputs that may not match text prompts or possess desired properties. Inspired by the success of alignment in tuning large language models, recent studies have investigated aligning diffusion models with human expectations and preferences. This work mainly reviews alignment of diffusion models, covering advancements in fundamentals of alignment, alignment techniques of diffusion models, preference benchmarks, and evaluation for diffusion models. Moreover, we discuss key perspectives on current challenges and promising future directions on solving the remaining challenges in alignment of diffusion models. To the best of our knowledge, our work is the first comprehensive review paper for researchers and engineers to comprehend, practice, and research alignment of diffusion models.
- Abstract(参考訳): 拡散モデルは生成モデルの主要なパラダイムとして登場し、様々な応用に優れています。
彼らの成功にもかかわらず、これらのモデルは、しばしば人間の意図に反し、テキストのプロンプトと一致しない、あるいは望ましい特性を持たない出力を生成する。
大規模言語モデルの調整におけるアライメントの成功に触発された最近の研究は、人間の期待や嗜好と拡散モデルの整合性について研究している。
この研究は、主に拡散モデルのアライメント、アライメントの基礎の進歩、拡散モデルのアライメント技術、選好ベンチマーク、拡散モデルの評価についてレビューする。
さらに,現在の課題に対する重要な視点と,拡散モデルのアライメントにおける残りの課題の解決に向けた今後の方向性について論じる。
我々の知識を最大限に活用するために、我々の研究は、拡散モデルの理解、実践、研究のアライメントを研究者やエンジニアが理解するための、初めての総合的なレビュー論文である。
関連論文リスト
- A Survey on Diffusion Models for Inverse Problems [110.6628926886398]
本稿では, 事前学習した拡散モデルを用いて, さらなる学習を必要とせず, 逆問題の解法について概説する。
逆問題に対する潜伏拡散モデルの使用に伴う具体的な課題と潜在的な解決策について論じる。
論文 参考訳(メタデータ) (2024-09-30T17:34:01Z) - Diffusion Models in Low-Level Vision: A Survey [82.77962165415153]
拡散モデルに基づくソリューションは、優れた品質と多様性のサンプルを作成する能力で広く称賛されている。
本稿では,3つの一般化拡散モデリングフレームワークを提案し,それらと他の深層生成モデルとの相関関係について検討する。
医療、リモートセンシング、ビデオシナリオなど、他のタスクに適用された拡張拡散モデルについて要約する。
論文 参考訳(メタデータ) (2024-06-17T01:49:27Z) - An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization [59.63880337156392]
拡散モデルはコンピュータビジョン、オーディオ、強化学習、計算生物学において大きな成功を収めた。
経験的成功にもかかわらず、拡散モデルの理論は非常に限定的である。
本稿では,前向きな理論や拡散モデルの手法を刺激する理論的露光について述べる。
論文 参考訳(メタデータ) (2024-04-11T14:07:25Z) - A Survey on Video Diffusion Models [103.03565844371711]
AI生成コンテンツ(AIGC)の最近の波は、コンピュータビジョンでかなりの成功を収めている。
その印象的な生成能力のため、拡散モデルは徐々にGANと自動回帰変換器に基づく手法に取って代わられている。
本稿では,AIGC時代の映像拡散モデルについて概観する。
論文 参考訳(メタデータ) (2023-10-16T17:59:28Z) - Diffusion Models for Time Series Applications: A Survey [23.003273147019446]
拡散モデルは現在、画像、ビデオ、テキスト合成に使われている。
我々は,時系列予測,計算,生成のための拡散に基づく手法に着目する。
拡散型手法の共通限界を結論し,今後の研究の方向性を明らかにする。
論文 参考訳(メタデータ) (2023-05-01T02:06:46Z) - Diffusion Models in Vision: A Survey [80.82832715884597]
拡散モデルは、前方拡散段階と逆拡散段階の2つの段階に基づく深層生成モデルである。
拡散モデルは、既知の計算負荷にもかかわらず、生成したサンプルの品質と多様性に対して広く評価されている。
論文 参考訳(メタデータ) (2022-09-10T22:00:30Z) - A Survey on Generative Diffusion Model [75.93774014861978]
拡散モデルは、深層生成モデルの新たなクラスである。
時間を要する反復生成過程や高次元ユークリッド空間への閉じ込めなど、いくつかの制限がある。
本調査では,拡散モデルの向上を目的とした高度な手法を多数提示する。
論文 参考訳(メタデータ) (2022-09-06T16:56:21Z) - Diffusion Models: A Comprehensive Survey of Methods and Applications [10.557289965753437]
拡散モデル(英: Diffusion model)は、密度理論の確立を伴う様々なタスクにおいて印象的な結果を示す深層生成モデルのクラスである。
近年,拡散モデルの性能向上への熱意が高まっている。
論文 参考訳(メタデータ) (2022-09-02T02:59:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。