Learning Multi-Aspect Item Palette: A Semantic Tokenization Framework for Generative Recommendation
- URL: http://arxiv.org/abs/2409.07276v3
- Date: Tue, 05 Aug 2025 11:07:31 GMT
- Title: Learning Multi-Aspect Item Palette: A Semantic Tokenization Framework for Generative Recommendation
- Authors: Qijiong Liu, Jieming Zhu, Zhaocheng Du, Lu Fan, Zhou Zhao, Xiao-Ming Wu,
- Abstract summary: We introduce LAMIA, a novel approach for multi-aspect semantic tokenization.<n>Unlike RQ-VAE, which uses a single embedding, LAMIA learns an item palette''--a collection of independent and semantically parallel embeddings.<n>Our results demonstrate significant improvements in recommendation accuracy over existing methods.
- Score: 55.99632509895994
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional recommendation models often rely on unique item identifiers (IDs) to distinguish between items, which can hinder their ability to effectively leverage item content information and generalize to long-tailed or cold-start items. Recently, semantic tokenization has been proposed as a promising solution that aims to tokenize each item's semantic representation into a sequence of discrete tokens. These semantic tokens have become fundamental in training generative recommendation models. However, existing methods typically rely on RQ-VAE, a residual vector quantizer, for semantic tokenization. This reliance introduces several key limitations, including challenges in embedding extraction, hierarchical coarse-to-fine quantization, and training stability. To address these issues, we introduce LAMIA, a novel approach for multi-aspect semantic tokenization. Unlike RQ-VAE, which uses a single embedding, LAMIA learns an ``item palette''--a collection of independent and semantically parallel embeddings that capture multiple aspects of items. Additionally, LAMIA enhances the semantic encoders through domain-specific tuning using text-based reconstruction tasks, resulting in more representative item palette embeddings. We have conducted extensive experiments to validate the effectiveness of the LAMIA framework across various recommendation tasks and datasets. Our results demonstrate significant improvements in recommendation accuracy over existing methods. To facilitate reproducible research, we will release the source code, data, and configurations.
Related papers
- A Simple Contrastive Framework Of Item Tokenization For Generative Recommendation [19.848402658341985]
We propose a novel unsupervised deep quantization based on contrastive learning, named SimCIT.<n>SimCIT combines multi-modal knowledge alignment and semantic tokenization in a mutually beneficial contrastive learning framework.
arXiv Detail & Related papers (2025-06-20T01:54:32Z) - Learning Item Representations Directly from Multimodal Features for Effective Recommendation [51.49251689107541]
multimodal recommender systems predominantly leverage Bayesian Personalized Ranking (BPR) optimization to learn item representations.<n>We propose a novel model (i.e., LIRDRec) that learns item representations directly from multimodal features to augment recommendation performance.
arXiv Detail & Related papers (2025-05-08T05:42:22Z) - Universal Item Tokenization for Transferable Generative Recommendation [89.42584009980676]
We propose UTGRec, a universal item tokenization approach for transferable Generative Recommendation.
By devising tree-structured codebooks, we discretize content representations into corresponding codes for item tokenization.
For raw content reconstruction, we employ dual lightweight decoders to reconstruct item text and images from discrete representations.
For collaborative knowledge integration, we assume that co-occurring items are similar and integrate collaborative signals through co-occurrence alignment and reconstruction.
arXiv Detail & Related papers (2025-04-06T08:07:49Z) - Pre-training Generative Recommender with Multi-Identifier Item Tokenization [78.87007819266957]
We propose MTGRec to augment token sequence data for Generative Recommender pre-training.
Our approach involves two key innovations: multi-identifier item tokenization and curriculum recommender pre-training.
Extensive experiments on three public benchmark datasets demonstrate that MTGRec significantly outperforms both traditional and generative recommendation baselines.
arXiv Detail & Related papers (2025-04-06T08:03:03Z) - Order-agnostic Identifier for Large Language Model-based Generative Recommendation [94.37662915542603]
Items are assigned identifiers for Large Language Models (LLMs) to encode user history and generate the next item.
Existing approaches leverage either token-sequence identifiers, representing items as discrete token sequences, or single-token identifiers, using ID or semantic embeddings.
We propose SETRec, which leverages semantic tokenizers to obtain order-agnostic multi-dimensional tokens.
arXiv Detail & Related papers (2025-02-15T15:25:38Z) - Enhancing Item Tokenization for Generative Recommendation through Self-Improvement [67.94240423434944]
Generative recommendation systems are driven by large language models (LLMs)
Current item tokenization methods include using text descriptions, numerical strings, or sequences of discrete tokens.
We propose a self-improving item tokenization method that allows the LLM to refine its own item tokenizations during training process.
arXiv Detail & Related papers (2024-12-22T21:56:15Z) - Learning ID-free Item Representation with Token Crossing for Multimodal Recommendation [26.737971605928358]
We propose an ID-free MultimOdal TOken Representation scheme named MOTOR.
We first employ product quantization to discretize each item's multimodal features into discrete token IDs.
We then interpret the token embeddings corresponding to these token IDs as implicit item features.
The resulting representations can replace the original ID embeddings and transform the original multimodal recommender into ID-free system.
arXiv Detail & Related papers (2024-10-25T03:06:10Z) - TokenRec: Learning to Tokenize ID for LLM-based Generative Recommendation [16.93374578679005]
TokenRec is a novel framework for tokenizing and retrieving large-scale language models (LLMs) based Recommender Systems (RecSys)
Our strategy, Masked Vector-Quantized (MQ) Tokenizer, quantizes the masked user/item representations learned from collaborative filtering into discrete tokens.
Our generative retrieval paradigm is designed to efficiently recommend top-$K$ items for users to eliminate the need for auto-regressive decoding and beam search processes.
arXiv Detail & Related papers (2024-06-15T00:07:44Z) - Improving LLMs for Recommendation with Out-Of-Vocabulary Tokens [51.584024345378005]
We show how to effectively tokenize users and items in Large Language Models (LLMs)-based recommender systems.
We emphasize the role of out-of-vocabulary (OOV) tokens in addition to the in-vocabulary ones.
Our proposed framework outperforms existing state-of-the-art methods across various downstream recommendation tasks.
arXiv Detail & Related papers (2024-06-12T17:59:05Z) - SEP: Self-Enhanced Prompt Tuning for Visual-Language Model [93.94454894142413]
We introduce a novel approach named Self-Enhanced Prompt Tuning (SEP)
SEP explicitly incorporates discriminative prior knowledge to enhance both textual-level and visual-level embeddings.
Comprehensive evaluations across various benchmarks and tasks confirm SEP's efficacy in prompt tuning.
arXiv Detail & Related papers (2024-05-24T13:35:56Z) - Learnable Item Tokenization for Generative Recommendation [78.30417863309061]
We propose LETTER (a LEarnable Tokenizer for generaTivE Recommendation), which integrates hierarchical semantics, collaborative signals, and code assignment diversity.
LETTER incorporates Residual Quantized VAE for semantic regularization, a contrastive alignment loss for collaborative regularization, and a diversity loss to mitigate code assignment bias.
arXiv Detail & Related papers (2024-05-12T15:49:38Z) - Uncovering Prototypical Knowledge for Weakly Open-Vocabulary Semantic
Segmentation [59.37587762543934]
This paper studies the problem of weakly open-vocabulary semantic segmentation (WOVSS)
Existing methods suffer from a granularity inconsistency regarding the usage of group tokens.
We propose the prototypical guidance network (PGSeg) that incorporates multi-modal regularization.
arXiv Detail & Related papers (2023-10-29T13:18:00Z) - Language Models As Semantic Indexers [78.83425357657026]
We introduce LMIndexer, a self-supervised framework to learn semantic IDs with a generative language model.
We show the high quality of the learned IDs and demonstrate their effectiveness on three tasks including recommendation, product search, and document retrieval.
arXiv Detail & Related papers (2023-10-11T18:56:15Z) - Preserving Modality Structure Improves Multi-Modal Learning [64.10085674834252]
Self-supervised learning on large-scale multi-modal datasets allows learning semantically meaningful embeddings without relying on human annotations.
These methods often struggle to generalize well on out-of-domain data as they ignore the semantic structure present in modality-specific embeddings.
We propose a novel Semantic-Structure-Preserving Consistency approach to improve generalizability by preserving the modality-specific relationships in the joint embedding space.
arXiv Detail & Related papers (2023-08-24T20:46:48Z) - LabelPrompt: Effective Prompt-based Learning for Relation Classification [31.291466190218912]
This paper presents a novel prompt-based learning method, namely LabelPrompt, for the relation classification task.
Motivated by the intuition to GIVE MODEL CHOICES!'', we first define additional tokens to represent relation labels, which regard these tokens as the verbaliser with semantic initialisation.
Then, to mitigate inconsistency between predicted relations and given entities, we implement an entity-aware module with contrastive learning.
arXiv Detail & Related papers (2023-02-16T04:06:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.