A Contrastive Symmetric Forward-Forward Algorithm (SFFA) for Continual Learning Tasks
- URL: http://arxiv.org/abs/2409.07387v1
- Date: Wed, 11 Sep 2024 16:21:44 GMT
- Title: A Contrastive Symmetric Forward-Forward Algorithm (SFFA) for Continual Learning Tasks
- Authors: Erik B. Terres-Escudero, Javier Del Ser, Pablo Garcia Bringas,
- Abstract summary: Forward-Forward Algorithm (FFA) has recently gained momentum as an alternative to the conventional back-propagation algorithm for neural network learning.
This work proposes the Symmetric Forward-Forward Algorithm (SFFA), a novel modification of the original FFA which partitions each layer into positive and negative neurons.
- Score: 7.345136916791223
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The so-called Forward-Forward Algorithm (FFA) has recently gained momentum as an alternative to the conventional back-propagation algorithm for neural network learning, yielding competitive performance across various modeling tasks. By replacing the backward pass of gradient back-propagation with two contrastive forward passes, the FFA avoids several shortcomings undergone by its predecessor (e.g., vanishing/exploding gradient) by enabling layer-wise training heuristics. In classification tasks, this contrastive method has been proven to effectively create a latent sparse representation of the input data, ultimately favoring discriminability. However, FFA exhibits an inherent asymmetric gradient behavior due to an imbalanced loss function between positive and negative data, adversely impacting on the model's generalization capabilities and leading to an accuracy degradation. To address this issue, this work proposes the Symmetric Forward-Forward Algorithm (SFFA), a novel modification of the original FFA which partitions each layer into positive and negative neurons. This allows the local fitness function to be defined as the ratio between the activation of positive neurons and the overall layer activity, resulting in a symmetric loss landscape during the training phase. To evaluate the enhanced convergence of our method, we conduct several experiments using multiple image classification benchmarks, comparing the accuracy of models trained with SFFA to those trained with its FFA counterpart. As a byproduct of this reformulation, we explore the advantages of using a layer-wise training algorithm for Continual Learning (CL) tasks. The specialization of neurons and the sparsity of their activations induced by layer-wise training algorithms enable efficient CL strategies that incorporate new knowledge (classes) into the neural network, while preventing catastrophic forgetting of previously...
Related papers
- PseudoNeg-MAE: Self-Supervised Point Cloud Learning using Conditional Pseudo-Negative Embeddings [55.55445978692678]
PseudoNeg-MAE is a self-supervised learning framework that enhances global feature representation of point cloud mask autoencoders.
We show that PseudoNeg-MAE achieves state-of-the-art performance on the ModelNet40 and ScanObjectNN datasets.
arXiv Detail & Related papers (2024-09-24T07:57:21Z) - On the Improvement of Generalization and Stability of Forward-Only Learning via Neural Polarization [7.345136916791223]
Forward-Forward Algorithm (FFA) has been shown to achieve competitive levels of performance in terms of generalization and complexity.
We propose a novel implementation of the FFA algorithm, denoted as Polar-FFA, which extends the original formulation by introducing a neural division.
Our results demonstrate that Polar-FFA outperforms FFA in terms of accuracy and convergence speed.
arXiv Detail & Related papers (2024-08-17T14:32:18Z) - Emerging NeoHebbian Dynamics in Forward-Forward Learning: Implications for Neuromorphic Computing [7.345136916791223]
Forward-Forward Algorithm (FFA) employs local learning rules for each layer.
We show that when employing a squared Euclidean norm as a goodness function driving the local learning, the resulting FFA is equivalent to a neo-Hebbian Learning Rule.
arXiv Detail & Related papers (2024-06-24T09:33:56Z) - Bayesian Learning-driven Prototypical Contrastive Loss for Class-Incremental Learning [42.14439854721613]
We propose a prototypical network with a Bayesian learning-driven contrastive loss (BLCL) tailored specifically for class-incremental learning scenarios.
Our approach dynamically adapts the balance between the cross-entropy and contrastive loss functions with a Bayesian learning technique.
arXiv Detail & Related papers (2024-05-17T19:49:02Z) - Gradient-Free Training of Recurrent Neural Networks using Random Perturbations [1.1742364055094265]
Recurrent neural networks (RNNs) hold immense potential for computations due to their Turing completeness and sequential processing capabilities.
Backpropagation through time (BPTT), the prevailing method, extends the backpropagation algorithm by unrolling the RNN over time.
BPTT suffers from significant drawbacks, including the need to interleave forward and backward phases and store exact gradient information.
We present a new approach to perturbation-based learning in RNNs whose performance is competitive with BPTT.
arXiv Detail & Related papers (2024-05-14T21:15:29Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - Improving Music Performance Assessment with Contrastive Learning [78.8942067357231]
This study investigates contrastive learning as a potential method to improve existing MPA systems.
We introduce a weighted contrastive loss suitable for regression tasks applied to a convolutional neural network.
Our results show that contrastive-based methods are able to match and exceed SoTA performance for MPA regression tasks.
arXiv Detail & Related papers (2021-08-03T19:24:25Z) - Incremental Embedding Learning via Zero-Shot Translation [65.94349068508863]
Current state-of-the-art incremental learning methods tackle catastrophic forgetting problem in traditional classification networks.
We propose a novel class-incremental method for embedding network, named as zero-shot translation class-incremental method (ZSTCI)
In addition, ZSTCI can easily be combined with existing regularization-based incremental learning methods to further improve performance of embedding networks.
arXiv Detail & Related papers (2020-12-31T08:21:37Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
We propose an Adaptive Gradient Method with Resilience and Momentum (AdaRem)
AdaRem adjusts the parameter-wise learning rate according to whether the direction of one parameter changes in the past is aligned with the direction of the current gradient.
Our method outperforms previous adaptive learning rate-based algorithms in terms of the training speed and the test error.
arXiv Detail & Related papers (2020-10-21T14:49:00Z) - Feature Purification: How Adversarial Training Performs Robust Deep
Learning [66.05472746340142]
We show a principle that we call Feature Purification, where we show one of the causes of the existence of adversarial examples is the accumulation of certain small dense mixtures in the hidden weights during the training process of a neural network.
We present both experiments on the CIFAR-10 dataset to illustrate this principle, and a theoretical result proving that for certain natural classification tasks, training a two-layer neural network with ReLU activation using randomly gradient descent indeed this principle.
arXiv Detail & Related papers (2020-05-20T16:56:08Z) - Semi-Implicit Back Propagation [1.5533842336139065]
We propose a semi-implicit back propagation method for neural network training.
The difference on the neurons are propagated in a backward fashion and the parameters are updated with proximal mapping.
Experiments on both MNIST and CIFAR-10 demonstrate that the proposed algorithm leads to better performance in terms of both loss decreasing and training/validation accuracy.
arXiv Detail & Related papers (2020-02-10T03:26:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.