Traceable LLM-based validation of statements in knowledge graphs
- URL: http://arxiv.org/abs/2409.07507v1
- Date: Wed, 11 Sep 2024 12:27:41 GMT
- Title: Traceable LLM-based validation of statements in knowledge graphs
- Authors: Daniel Adam, Tomáš Kliegr,
- Abstract summary: This article presents a method for verifying RDF triples using LLMs, with an emphasis on providing traceable arguments.
Instead, verified RDF statements are compared to chunks of external documents retrieved through a web search or Wikipedia.
To assess the possible application of this workflow on biosciences content, we evaluated 1,719 positive statements from the BioRED dataset and the same number of newly generated negative statements.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article presents a method for verifying RDF triples using LLMs, with an emphasis on providing traceable arguments. Because the LLMs cannot currently reliably identify the origin of the information used to construct the response to the user query, our approach is to avoid using internal LLM factual knowledge altogether. Instead, verified RDF statements are compared to chunks of external documents retrieved through a web search or Wikipedia. To assess the possible application of this workflow on biosciences content, we evaluated 1,719 positive statements from the BioRED dataset and the same number of newly generated negative statements. The resulting precision is 88%, and recall is 44%. This indicates that the method requires human oversight. We demonstrate the method on Wikidata, where a SPARQL query is used to automatically retrieve statements needing verification. Overall, the results suggest that LLMs could be used for large-scale verification of statements in KGs, a task previously unfeasible due to human annotation costs.
Related papers
- Leveraging LLMs for Utility-Focused Annotation: Reducing Manual Effort for Retrieval and RAG [69.51637252264277]
We investigate whether Large Language Models (LLMs) can effectively replace human annotations in training retrieval models.
Our experiments show that retrievers trained on utility-focused annotations significantly outperform those trained on human annotations in the out-of-domain setting.
Just 20% human-annotated data enables retrievers trained with utility-focused annotations to match the performance of models trained entirely with human annotations.
arXiv Detail & Related papers (2025-04-07T16:05:52Z) - Knowing When to Ask -- Bridging Large Language Models and Data [3.111987311375933]
Large Language Models (LLMs) are prone to generating factually incorrect information when responding to queries that involve numerical and statistical data or other timely facts.
We present an approach for enhancing the accuracy of LLMs by integrating them with Data Commons.
arXiv Detail & Related papers (2024-09-10T17:51:21Z) - LLMJudge: LLMs for Relevance Judgments [37.103230004631996]
The challenge is organized as part of the LLM4Eval workshop at SIGIR 2024.
Recent studies have shown that LLMs can generate reliable relevance judgments for search systems.
The collected data will be released as a package to support automatic relevance judgment research.
arXiv Detail & Related papers (2024-08-09T23:15:41Z) - CaLM: Contrasting Large and Small Language Models to Verify Grounded Generation [76.31621715032558]
Grounded generation aims to equip language models (LMs) with the ability to produce more credible and accountable responses.
We introduce CaLM, a novel verification framework.
Our framework empowers smaller LMs, which rely less on parametric memory, to validate the output of larger LMs.
arXiv Detail & Related papers (2024-06-08T06:04:55Z) - Are you still on track!? Catching LLM Task Drift with Activations [55.75645403965326]
Task drift allows attackers to exfiltrate data or influence the LLM's output for other users.
We show that a simple linear classifier can detect drift with near-perfect ROC AUC on an out-of-distribution test set.
We observe that this approach generalizes surprisingly well to unseen task domains, such as prompt injections, jailbreaks, and malicious instructions.
arXiv Detail & Related papers (2024-06-02T16:53:21Z) - Increasing the LLM Accuracy for Question Answering: Ontologies to the Rescue! [1.0786522863027366]
We present an approach that consists of 1) Ontology-based Query Check (OBQC) and 2) LLM Repair.
Our approach increases the overall accuracy to 72% including an additional 8% of "I don't know" unknown results.
arXiv Detail & Related papers (2024-05-20T00:28:00Z) - $\forall$uto$\exists$val: Autonomous Assessment of LLMs in Formal Synthesis and Interpretation Tasks [21.12437562185667]
This paper presents a new approach for scaling LLM assessment in translating formal syntax to natural language.
We use context-free grammars (CFGs) to generate out-of-distribution datasets on the fly.
We also conduct an assessment of several SOTA closed and open-source LLMs to showcase the feasibility and scalability of this paradigm.
arXiv Detail & Related papers (2024-03-27T08:08:00Z) - LLatrieval: LLM-Verified Retrieval for Verifiable Generation [67.93134176912477]
Verifiable generation aims to let the large language model (LLM) generate text with supporting documents.
We propose LLatrieval (Large Language Model Verified Retrieval), where the LLM updates the retrieval result until it verifies that the retrieved documents can sufficiently support answering the question.
Experiments show that LLatrieval significantly outperforms extensive baselines and achieves state-of-the-art results.
arXiv Detail & Related papers (2023-11-14T01:38:02Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
Large language models (LLMs) have been treated as knowledge bases due to their strong performance in knowledge probing tasks.
How do we evaluate the capabilities of LLMs to consistently produce factually correct answers?
We propose MOdel kNowledge relIabiliTy scORe (MONITOR), a novel metric designed to directly measure LLMs' factual reliability.
arXiv Detail & Related papers (2023-10-15T12:40:30Z) - Statistical Knowledge Assessment for Large Language Models [79.07989821512128]
Given varying prompts regarding a factoid question, can a large language model (LLM) reliably generate factually correct answers?
We propose KaRR, a statistical approach to assess factual knowledge for LLMs.
Our results reveal that the knowledge in LLMs with the same backbone architecture adheres to the scaling law, while tuning on instruction-following data sometimes compromises the model's capability to generate factually correct text reliably.
arXiv Detail & Related papers (2023-05-17T18:54:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.