論文の概要: Debiased high-dimensional regression calibration for errors-in-variables log-contrast models
- arxiv url: http://arxiv.org/abs/2409.07568v1
- Date: Wed, 11 Sep 2024 18:47:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 18:42:28.894458
- Title: Debiased high-dimensional regression calibration for errors-in-variables log-contrast models
- Title(参考訳): 誤差不変対数コントラストモデルに対するデバイアス付き高次元回帰キャリブレーション
- Authors: Huali Zhao, Tianying Wang,
- Abstract要約: 腸内マイクロバイオームとメダゲノミクスデータを分析する上での課題により,高次元回帰モデルにおける測定誤差の問題に対処することを目的としている。
本稿では,誤測定や汚染データの影響を受け,高次元構成データに対する統計的推測を行うための先駆的な取り組みを示す。
- 参考スコア(独自算出の注目度): 0.999726509256195
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by the challenges in analyzing gut microbiome and metagenomic data, this work aims to tackle the issue of measurement errors in high-dimensional regression models that involve compositional covariates. This paper marks a pioneering effort in conducting statistical inference on high-dimensional compositional data affected by mismeasured or contaminated data. We introduce a calibration approach tailored for the linear log-contrast model. Under relatively lenient conditions regarding the sparsity level of the parameter, we have established the asymptotic normality of the estimator for inference. Numerical experiments and an application in microbiome study have demonstrated the efficacy of our high-dimensional calibration strategy in minimizing bias and achieving the expected coverage rates for confidence intervals. Moreover, the potential application of our proposed methodology extends well beyond compositional data, suggesting its adaptability for a wide range of research contexts.
- Abstract(参考訳): 本研究は, 腸内微生物およびメダゲノミクスデータの解析における課題から, 構成共変量を含む高次元回帰モデルにおける測定誤差の問題に取り組むことを目的としている。
本稿では,誤測定や汚染データの影響を受け,高次元構成データに対する統計的推測を行うための先駆的な取り組みを示す。
線形対数コントラストモデルに適した校正手法を提案する。
パラメータの疎度レベルに関する比較的寛大な条件下では、推定のための推定器の漸近正規性を確立した。
マイクロバイオーム研究における数値実験と応用により, 偏差を最小化し, 被曝率の予測値を達成するための高次元キャリブレーション法の有効性が示された。
さらに,提案手法の潜在的な適用範囲は,構成データを超え,幅広い研究状況に適応可能であることを示唆している。
関連論文リスト
- Is Difficulty Calibration All We Need? Towards More Practical Membership Inference Attacks [16.064233621959538]
我々は,textbfRe-levertextbfA を直接 textbfRe-levertextbfA を用いて mtextbfItigate the error in textbfDifficulty calibration を提案する。
論文 参考訳(メタデータ) (2024-08-31T11:59:42Z) - Risk and cross validation in ridge regression with correlated samples [72.59731158970894]
我々は,データポイントが任意の相関関係を持つ場合,リッジ回帰のイン・オブ・サンプルリスクのトレーニング例を提供する。
さらに、テストポイントがトレーニングセットと非自明な相関を持ち、時系列予測で頻繁に発生するような場合まで分析を拡張します。
我々は多種多様な高次元データにまたがって理論を検証する。
論文 参考訳(メタデータ) (2024-08-08T17:27:29Z) - Perturbation-based Effect Measures for Compositional Data [3.9543275888781224]
構成的特徴に対する既存の効果測定は、現代の多くの応用には不十分である。
両問題に対処する仮説データ摂動に基づくフレームワークを提案する。
摂動依存再パラメータ化を導出することにより, 摂動効果の平均を効率的に推定できることを示す。
論文 参考訳(メタデータ) (2023-11-30T12:27:15Z) - Errors-in-variables Fr\'echet Regression with Low-rank Covariate
Approximation [2.1756081703276]
Fr'echet回帰は、非ユークリッド応答変数を含む回帰分析のための有望なアプローチとして登場した。
提案手法は,大域的Fr'echet回帰と主成分回帰の概念を組み合わせて,回帰推定器の効率と精度を向上させることを目的とする。
論文 参考訳(メタデータ) (2023-05-16T08:37:54Z) - High-dimensional Measurement Error Models for Lipschitz Loss [2.6415509201394283]
リプシッツ損失関数のクラスに対する高次元計測誤差モデルを開発する。
我々の推定器は、適切な実現可能な集合に属するすべての推定器の中で、$L_1$ノルムを最小化するように設計されている。
有限標本統計誤差境界と符号の整合性の観点から理論的な保証を導出する。
論文 参考訳(メタデータ) (2022-10-26T20:06:05Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
最小二乗法のような単純な方法でさえ、データが適応的に収集されるときの非正規な振る舞いを示すことができる。
我々は,これらの分布異常を少なくとも2乗推定で補正するオンラインデバイアス推定器のファミリーを提案する。
我々は,マルチアームバンディット,自己回帰時系列推定,探索による能動的学習などの応用を通して,我々の理論の有用性を実証する。
論文 参考訳(メタデータ) (2021-07-05T21:05:11Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
ランダム化実験による因果効果の推定は臨床研究の中心である。
歴史的借用法のほとんどは、厳格なタイプiエラー率制御を犠牲にして分散の削減を達成する。
論文 参考訳(メタデータ) (2020-12-17T21:10:10Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
本稿では,データセットの組み合わせから頑健で一般化可能な予測モデルを学習する際の問題点について検討する。
堅牢なモデルを学ぶことの課題の一部は、保存されていない共同設立者の影響にある。
異なるモダリティの医療データに対するアプローチの実証的性能を実証する。
論文 参考訳(メタデータ) (2020-07-21T08:18:06Z) - An Investigation of Why Overparameterization Exacerbates Spurious
Correlations [98.3066727301239]
この動作を駆動するトレーニングデータの2つの重要な特性を特定します。
モデルの"記憶"に対する帰納的バイアスが,パラメータ化の超過を損なう可能性を示す。
論文 参考訳(メタデータ) (2020-05-09T01:59:13Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z) - Measurement Error in Nutritional Epidemiology: A Survey [0.0]
本稿では,栄養疫学分野における露出変数の測定誤差のバイアス補正モデルについてレビューする。
測定誤差の影響により, パラメータ推定は保守的であり, 傾斜パラメータの信頼区間が狭すぎる。
論文 参考訳(メタデータ) (2020-04-14T12:31:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。