論文の概要: Self-Masking Networks for Unsupervised Adaptation
- arxiv url: http://arxiv.org/abs/2409.07577v1
- Date: Wed, 11 Sep 2024 19:08:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 18:42:28.883308
- Title: Self-Masking Networks for Unsupervised Adaptation
- Title(参考訳): 教師なし適応のためのセルフマスキングネットワーク
- Authors: Alfonso Taboada Warmerdam, Mathilde Caron, Yuki M. Asano,
- Abstract要約: 本稿では,二項マスクを学習することで,事前学習されたジェネリストモデルを自己指導的に適応させる手法を提案する。
これらの自己監視型マスキングネットワーク(SMN)は、ラベル効率の低いダウンストリームタスクの性能を最大79倍に向上させる。
- 参考スコア(独自算出の注目度): 21.65018402671205
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advent of billion-parameter foundation models, efficient fine-tuning has become increasingly important for the adaptation of models to downstream tasks. However, especially in computer vision, it can be hard to achieve good performance when access to quality labeled data is lacking. In this work, we propose a method adapting pretrained generalist models in a self-supervised manner by learning binary masks. These self-supervised masking networks (SMNs) are up to 79x more efficient to store and significantly improve performance on label-efficient downstream tasks. We validate the usefulness of learning binary masks as a fine-tuning method on 8 datasets and 3 model architectures, and we demonstrate the effectiveness of SMNs in 3 label-efficient settings.
- Abstract(参考訳): 数十億パラメータの基礎モデルの出現により、下流タスクへのモデルの適応において、効率的な微調整がますます重要になっている。
しかし、特にコンピュータビジョンでは、高品質なラベル付きデータにアクセスできない場合、優れた性能を達成することは困難である。
本研究では,二項マスクを学習することで,事前学習されたジェネリストモデルを自己指導的に適応させる手法を提案する。
これらの自己教師型マスキングネットワーク(SMN)は、ラベル効率の低いダウンストリームタスクの性能を最大79倍に向上させる。
8つのデータセットと3つのモデルアーキテクチャ上での微調整手法としてバイナリマスクを学習することの有用性を検証するとともに、3つのラベル効率の良い設定におけるSMNの有効性を実証する。
関連論文リスト
- Emerging Property of Masked Token for Effective Pre-training [15.846621577804791]
Masked Image Modeling (MIM)はコンピュータビジョンにおける最近のブレークスルーの推進に役立っている。
MIMの全体的な効率は、トレーニング前のフェーズの長い持続時間によって妨げられることがある。
本稿では,マスクトークンの重み付けとキー特性の強化によるモデル効率の向上を目的として,マスクトークン最適化(MTO)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-04-12T08:46:53Z) - SeiT++: Masked Token Modeling Improves Storage-efficient Training [36.95646819348317]
近年のDeep Neural Network(DNN)モデルでは,コンピュータビジョンタスクのパフォーマンスが大幅に向上している。
高度に一般化可能で高性能なビジョンモデルを実現するには、拡張データセットが必要である。
SeiTによる最近のブレークスルーは、Vector-Quantized (VQ)特徴ベクトル(トークン)を視覚分類のためのネットワーク入力として使用することを提案した。
本稿では,自己指導型事前学習のためのMasked Token Modeling (MTM)を統合し,SeyTを拡張した。
論文 参考訳(メタデータ) (2023-12-15T04:11:34Z) - Asymmetric Masked Distillation for Pre-Training Small Foundation Models [52.56257450614992]
自己教師型基礎モデルは、マスク付きオートエンコーディングの事前学習パラダイムのおかげで、コンピュータビジョンにおいて大きな可能性を秘めている。
本稿では、下流タスクに効率的に適応できる比較的小さな視覚変換器モデルを事前学習することに焦点を当てる。
自動符号化による比較的小さなモデルの事前学習のための新しい非対称マスク蒸留(AMD)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-06T14:44:34Z) - Masked Autoencoding for Scalable and Generalizable Decision Making [93.84855114717062]
MaskDPは、強化学習と行動クローンのためのシンプルでスケーラブルな自己教師付き事前学習手法である。
我々は,MaskDPモデルにより,単一ゴールや複数ゴール到達といった新しいBCタスクへのゼロショット転送能力が得られることを発見した。
論文 参考訳(メタデータ) (2022-11-23T07:04:41Z) - Prompt Tuning for Parameter-efficient Medical Image Segmentation [79.09285179181225]
2つの医用画像データセットのセマンティックセグメンテーションにパラメータ効率が良いが効果的な適応を実現するために,いくつかのコントリビューションを提案し,検討する。
我々はこのアーキテクチャを、オンライン生成プロトタイプへの割り当てに基づく専用密集型セルフスーパービジョンスキームで事前訓練する。
得られたニューラルネットワークモデルにより、完全に微調整されたモデルとパラメータに適応したモデルとのギャップを緩和できることを実証する。
論文 参考訳(メタデータ) (2022-11-16T21:55:05Z) - Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic
Image Classification [61.656149405657246]
ドメイン適応は、十分なラベルデータを取得することが困難な画像分類タスクに有効である。
本稿では,3つのドメイン適応手法を拡張することで,アンサンブル学習を積み重ねるための新しい手法SELDAを提案する。
Age-Related Eye Disease Study (AREDS)ベンチマーク眼科データセットを用いた実験結果から,提案モデルの有効性が示された。
論文 参考訳(メタデータ) (2022-09-27T14:19:00Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
未知タスクの視覚言語モデルのためのモデル非依存型マルチタスクファインチューニング(MAMF)を提案する。
モデルに依存しないメタラーニング(MAML)と比較して、MAMFは二段階最適化を捨て、一階勾配のみを使用する。
MAMFは5つのベンチマークデータセット上で、数ショットの転送学習において古典的な微調整法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-03-09T17:26:53Z) - Complementary Ensemble Learning [1.90365714903665]
我々は最先端のディープラーニングモデルの性能向上手法を考案した。
具体的には、最先端モデルの不確実性を補完できる補助モデルを訓練する。
論文 参考訳(メタデータ) (2021-11-09T03:23:05Z) - Masking as an Efficient Alternative to Finetuning for Pretrained
Language Models [49.64561153284428]
我々は、微調整によって修正する代わりに、事前訓練された重量に対する選択的な二乗マスクを学習する。
内在的評価では、マスキング言語モデルによって計算された表現が、下流タスクの解決に必要な情報を符号化していることを示す。
論文 参考訳(メタデータ) (2020-04-26T15:03:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。