論文の概要: Violence detection in videos using deep recurrent and convolutional neural networks
- arxiv url: http://arxiv.org/abs/2409.07581v1
- Date: Wed, 11 Sep 2024 19:21:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 18:42:28.875479
- Title: Violence detection in videos using deep recurrent and convolutional neural networks
- Title(参考訳): ディープリカレントニューラルネットワークと畳み込みニューラルネットワークを用いたビデオの暴力検出
- Authors: Abdarahmane Traoré, Moulay A. Akhloufi,
- Abstract要約: 繰り返しニューラルネットワーク(RNN)と2次元畳み込みニューラルネットワーク(2D CNN)を組み合わせた暴力検出のためのディープラーニングアーキテクチャを提案する。
ビデオフレームに加えて、キャプチャーシーケンスを用いて計算した光フローを用いる。
提案手法は最先端技術と同じレベルに達し,時折それらを上回るものとなる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Violence and abnormal behavior detection research have known an increase of interest in recent years, due mainly to a rise in crimes in large cities worldwide. In this work, we propose a deep learning architecture for violence detection which combines both recurrent neural networks (RNNs) and 2-dimensional convolutional neural networks (2D CNN). In addition to video frames, we use optical flow computed using the captured sequences. CNN extracts spatial characteristics in each frame, while RNN extracts temporal characteristics. The use of optical flow allows to encode the movements in the scenes. The proposed approaches reach the same level as the state-of-the-art techniques and sometime surpass them. It was validated on 3 databases achieving good results.
- Abstract(参考訳): 暴力と異常な行動検出の研究は、主に世界中の大都市で犯罪が増加しているため、近年、関心が高まっていることが知られている。
本研究では、リカレントニューラルネットワーク(RNN)と2次元畳み込みニューラルネットワーク(2D CNN)を組み合わせた暴力検出のためのディープラーニングアーキテクチャを提案する。
ビデオフレームに加えて、キャプチャーシーケンスを用いて計算した光フローを用いる。
CNNは各フレームの空間特性を抽出し、RNNは時間特性を抽出する。
光フローを使用することで、シーンの動きを符号化することができる。
提案手法は最先端技術と同じレベルに達し,時折それらを上回るものとなる。
3つのデータベースで検証され、良好な結果が得られた。
関連論文リスト
- 2D bidirectional gated recurrent unit convolutional Neural networks for end-to-end violence detection In videos [0.0]
本稿では,双方向Gated Recurrent Unit (BiGRU) と2次元畳み込みニューラルネットワーク (CNN) を組み合わせて,ビデオシーケンス中の暴力を検出するアーキテクチャを提案する。
CNNは各フレームから空間特性を抽出し、BiGRUは複数のフレームからCNN抽出特徴を用いて時間的および局所的な運動特性を抽出する。
論文 参考訳(メタデータ) (2024-09-11T19:36:12Z) - Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
エージェントが制御する多次元決定論的ポリシーを学習する必要があるタスクに焦点をあてる。
既存のスパイクベースのRL法は、SNNの出力として発火率を取り、完全に接続された層を通して連続的なアクション空間(つまり決定論的なポリシー)を表すように変換する。
浮動小数点行列操作を伴わない完全にスパイクするアクターネットワークを開発するため,昆虫に見られる非スパイク介在ニューロンからインスピレーションを得た。
論文 参考訳(メタデータ) (2024-01-09T07:31:34Z) - Two-stream Multi-dimensional Convolutional Network for Real-time
Violence Detection [0.0]
本研究は,2-stream Multi-dimensional Convolutional Network (2s-MDCN) と呼ばれる,暴力検出のための新しいアーキテクチャを提案する。
提案手法は1次元, 2次元, 3次元の畳み込みによって時間的, 空間的情報を独立に抽出する。
我々のモデルは、最大の暴力検出ベンチマークデータセットで89.7%の最先端の精度を得た。
論文 参考訳(メタデータ) (2022-11-08T14:04:47Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Detecting Violence in Video Based on Deep Features Fusion Technique [0.30458514384586394]
本研究では、2つの畳み込みニューラルネットワーク(CNN)の融合技術を用いて暴力を検出する新しい方法を提案する。
提案手法の性能は,検出精度の観点から3つの標準ベンチマークデータセットを用いて評価した。
論文 参考訳(メタデータ) (2022-04-15T12:51:20Z) - Visual Attention Network [90.0753726786985]
本稿では,自己アテンションにおける自己適応性および長距離相関を実現するために,新しいカーネルアテンション(LKA)モジュールを提案する。
また、LKAに基づく新しいニューラルネットワーク、すなわちVisual Attention Network (VAN)を導入する。
VANは、最先端のビジョントランスフォーマーと畳み込みニューラルネットワークを、広範な実験において大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-02-20T06:35:18Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
CNNのホワイトボックス攻撃やブラックボックス攻撃に対する堅牢性について検討する。
結果は、蒸留されたCNN、エージェントベースの最新のprunedモデル、およびバイナライズニューラルネットワークのために示されています。
論文 参考訳(メタデータ) (2021-03-14T20:43:19Z) - Anomaly Recognition from surveillance videos using 3D Convolutional
Neural Networks [0.0]
異常なアクティビティ認識は、通常のストリームから変化するパターンやイベントを識別する。
この研究は、中央フロリダ大学犯罪ビデオデータセットに基づいて訓練された深部3次元畳み込みネットワーク(3D ConvNets)を用いて、特徴の学習にシンプルで効果的なアプローチを提供する。
論文 参考訳(メタデータ) (2021-01-04T16:32:48Z) - Continuous Emotion Recognition with Spatiotemporal Convolutional Neural
Networks [82.54695985117783]
In-theld でキャプチャした長いビデオシーケンスを用いて,持続的な感情認識のための最先端のディープラーニングアーキテクチャの適合性を検討する。
我々は,2D-CNNと長期記憶ユニットを組み合わせた畳み込みリカレントニューラルネットワークと,2D-CNNモデルの微調整時の重みを膨らませて構築した膨らませた3D-CNNモデルを開発した。
論文 参考訳(メタデータ) (2020-11-18T13:42:05Z) - Neural Human Video Rendering by Learning Dynamic Textures and
Rendering-to-Video Translation [99.64565200170897]
本研究では,2次元スクリーン空間に人体を埋め込むことで,時間的コヒーレントな微細な細部を学習することで,人間の映像合成手法を提案する。
我々は,人間の再現やモノクロ映像からの新たなビュー合成などのアプローチの適用例を示し,質的にも定量的にも,芸術の状態を著しく改善した。
論文 参考訳(メタデータ) (2020-01-14T18:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。