論文の概要: A Cost-Aware Approach to Adversarial Robustness in Neural Networks
- arxiv url: http://arxiv.org/abs/2409.07609v1
- Date: Wed, 11 Sep 2024 20:43:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 18:31:44.604024
- Title: A Cost-Aware Approach to Adversarial Robustness in Neural Networks
- Title(参考訳): ニューラルネットワークの対向ロバスト性に対するコストアウェアアプローチ
- Authors: Charles Meyers, Mohammad Reza Saleh Sedghpour, Tommy Löfstedt, Erik Elmroth,
- Abstract要約: 本稿では,ハードウェア選択,バッチサイズ,エポック数,テストセット精度の影響を測定するために,高速化された故障時間モデルを提案する。
我々は、複数のGPUタイプを評価し、モデルの堅牢性を最大化し、モデル実行時間を同時に最小化するためにTree Parzen Estimatorを使用します。
- 参考スコア(独自算出の注目度): 1.622320874892682
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Considering the growing prominence of production-level AI and the threat of adversarial attacks that can evade a model at run-time, evaluating the robustness of models to these evasion attacks is of critical importance. Additionally, testing model changes likely means deploying the models to (e.g. a car or a medical imaging device), or a drone to see how it affects performance, making un-tested changes a public problem that reduces development speed, increases cost of development, and makes it difficult (if not impossible) to parse cause from effect. In this work, we used survival analysis as a cloud-native, time-efficient and precise method for predicting model performance in the presence of adversarial noise. For neural networks in particular, the relationships between the learning rate, batch size, training time, convergence time, and deployment cost are highly complex, so researchers generally rely on benchmark datasets to assess the ability of a model to generalize beyond the training data. To address this, we propose using accelerated failure time models to measure the effect of hardware choice, batch size, number of epochs, and test-set accuracy by using adversarial attacks to induce failures on a reference model architecture before deploying the model to the real world. We evaluate several GPU types and use the Tree Parzen Estimator to maximize model robustness and minimize model run-time simultaneously. This provides a way to evaluate the model and optimise it in a single step, while simultaneously allowing us to model the effect of model parameters on training time, prediction time, and accuracy. Using this technique, we demonstrate that newer, more-powerful hardware does decrease the training time, but with a monetary and power cost that far outpaces the marginal gains in accuracy.
- Abstract(参考訳): 生産レベルのAIの普及と、実行時にモデルを回避できる敵攻撃の脅威を考えると、これらの回避攻撃に対するモデルの堅牢性を評価することが重要である。
さらに、テストモデルの変更は、モデルが(例えば車や医療画像装置)、あるいはドローンにデプロイされ、それがパフォーマンスにどのように影響するかを確認することを意味し、テストされていない変更は、開発速度を減少させ、開発コストを増大させ、効果を解析することが困難(不可能ではないとしても)になる。
本研究では, 対向雑音の存在下でのモデル性能を予測するための, クラウドネイティブ, 時間効率, 高精度な手法として生存分析を用いた。
特にニューラルネットワークでは、学習率、バッチサイズ、トレーニング時間、収束時間、デプロイメントコストの関係は非常に複雑であるため、研究者は一般的に、トレーニングデータを超えてモデルを一般化する能力を評価するために、ベンチマークデータセットに依存する。
そこで本研究では,ハードウェア選択,バッチサイズ,エポック数,テストセットの精度の測定にアクセラレーションされた故障時間モデルを用い,実世界へのモデルをデプロイする前に,参照モデルアーキテクチャ上で障害を誘導するために逆アタックを用いる手法を提案する。
我々は、複数のGPUタイプを評価し、モデルの堅牢性を最大化し、モデル実行時間を同時に最小化するためにTree Parzen Estimatorを使用します。
これにより、モデルを評価し、単一のステップで最適化すると同時に、トレーニング時間、予測時間、精度に対するモデルパラメータの影響をモデル化することが可能になる。
この手法を用いることで、より新しい、より強力なハードウェアがトレーニング時間を短縮することを示したが、金銭的、電力的コストが精度の限界ゲインをはるかに上回っている。
関連論文リスト
- Robustness-Congruent Adversarial Training for Secure Machine Learning
Model Updates [13.911586916369108]
機械学習モデルにおける誤分類は、敵の例に対して堅牢性に影響を及ぼす可能性があることを示す。
この問題に対処するために,ロバストネス・コングロレント・逆行訓練という手法を提案する。
我々のアルゴリズムと、より一般的には、非回帰的制約で学習することは、一貫した推定器を訓練するための理論的に基底的なフレームワークを提供することを示す。
論文 参考訳(メタデータ) (2024-02-27T10:37:13Z) - A Training Rate and Survival Heuristic for Inference and Robustness Evaluation (TRASHFIRE) [1.622320874892682]
この研究は、特定のモデルハイパーパラメータが、相手の存在下でモデルの性能にどのように影響するかを理解し予測する問題に対処する。
提案手法では、サバイバルモデル、最悪の例、コスト認識分析を用いて、特定のモデル変更を正確かつ正確に拒否する。
提案手法を用いて、最も単純なホワイトボックス攻撃に対して、ResNetは絶望的に反対であることを示す。
論文 参考訳(メタデータ) (2024-01-24T19:12:37Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - CausalAgents: A Robustness Benchmark for Motion Forecasting using Causal
Relationships [8.679073301435265]
既存のデータに摂動を適用することにより、モデルロバスト性の評価と改善のための新しいベンチマークを構築する。
我々はこれらのラベルを使用して、現場から非因果的エージェントを削除することでデータを摂動する。
非因果摂動下では, minADE の相対的な変化は, 原型と比較して25$-$38%である。
論文 参考訳(メタデータ) (2022-07-07T21:28:23Z) - MEMO: Test Time Robustness via Adaptation and Augmentation [131.28104376280197]
テスト時間ロバスト化の問題、すなわちモデルロバスト性を改善するためにテストインプットを用いて検討する。
最近の先行研究ではテスト時間適応法が提案されているが、それぞれ追加の仮定を導入している。
モデルが確率的で適応可能な任意のテスト環境で使用できるシンプルなアプローチを提案する。
論文 参考訳(メタデータ) (2021-10-18T17:55:11Z) - Black-box Adversarial Attacks on Network-wide Multi-step Traffic State
Prediction Models [4.353029347463806]
予測モデルをブラックボックスとして扱うことで,敵攻撃の枠組みを提案する。
相手は任意の入力で予測モデルを導出し、対応する出力を得る。
攻撃の有効性を検証するため,グラフニューラルネットワークベースモデル(GCGRNNとDCRNN)の2つの状態について検討した。
論文 参考訳(メタデータ) (2021-10-17T03:45:35Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
本研究は,空間的次元と時間的次元に細かな注意を払っている新しいスケルトンに基づく人間行動認識モデルを提案する。
実験により、トレーニング可能なパラメータをはるかに少なくし、トレーニングや推論の高速化を図りながら、モデルが同等のパフォーマンスを達成できることが示されている。
論文 参考訳(メタデータ) (2021-07-15T02:53:11Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - A Simple Fine-tuning Is All You Need: Towards Robust Deep Learning Via
Adversarial Fine-tuning [90.44219200633286]
我々は,$textitslow start, fast decay$ learning rate schedulingストラテジーに基づく,単純かつ非常に効果的な敵の微調整手法を提案する。
実験の結果,提案手法はCIFAR-10, CIFAR-100, ImageNetデータセットの最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-25T20:50:15Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。