HERL: Tiered Federated Learning with Adaptive Homomorphic Encryption using Reinforcement Learning
- URL: http://arxiv.org/abs/2409.07631v1
- Date: Wed, 11 Sep 2024 21:26:23 GMT
- Title: HERL: Tiered Federated Learning with Adaptive Homomorphic Encryption using Reinforcement Learning
- Authors: Jiaxang Tang, Zeshan Fayyaz, Mohammad A. Salahuddin, Raouf Boutaba, Zhi-Li Zhang, Ali Anwar,
- Abstract summary: HERL is a Reinforcement Learning-based approach that uses Q-Learning to dynamically optimize encryption parameters.
Our proposed method involves first profiling and tiering clients according to the chosen clustering approach.
Our results show that HERL improves utility by 17%, reduces the convergence time by up to 24%, and increases efficiency by up to 30%, with minimal security loss.
- Score: 12.628921853388862
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning is a well-researched approach for collaboratively training machine learning models across decentralized data while preserving privacy. However, integrating Homomorphic Encryption to ensure data confidentiality introduces significant computational and communication overheads, particularly in heterogeneous environments where clients have varying computational capacities and security needs. In this paper, we propose HERL, a Reinforcement Learning-based approach that uses Q-Learning to dynamically optimize encryption parameters, specifically the polynomial modulus degree, $N$, and the coefficient modulus, $q$, across different client tiers. Our proposed method involves first profiling and tiering clients according to the chosen clustering approach, followed by dynamically selecting the most suitable encryption parameters using an RL-agent. Experimental results demonstrate that our approach significantly reduces the computational overhead while maintaining utility and a high level of security. Empirical results show that HERL improves utility by 17%, reduces the convergence time by up to 24%, and increases convergence efficiency by up to 30%, with minimal security loss.
Related papers
- Boosting the Performance of Decentralized Federated Learning via Catalyst Acceleration [66.43954501171292]
We introduce Catalyst Acceleration and propose an acceleration Decentralized Federated Learning algorithm called DFedCata.
DFedCata consists of two main components: the Moreau envelope function, which addresses parameter inconsistencies, and Nesterov's extrapolation step, which accelerates the aggregation phase.
Empirically, we demonstrate the advantages of the proposed algorithm in both convergence speed and generalization performance on CIFAR10/100 with various non-iid data distributions.
arXiv Detail & Related papers (2024-10-09T06:17:16Z) - EncCluster: Scalable Functional Encryption in Federated Learning through Weight Clustering and Probabilistic Filters [3.9660142560142067]
Federated Learning (FL) enables model training across decentralized devices by communicating solely local model updates to an aggregation server.
FL remains vulnerable to inference attacks during model update transmissions.
We present EncCluster, a novel method that integrates model compression through weight clustering with recent decentralized FE and privacy-enhancing data encoding.
arXiv Detail & Related papers (2024-06-13T14:16:50Z) - FedCAda: Adaptive Client-Side Optimization for Accelerated and Stable Federated Learning [57.38427653043984]
Federated learning (FL) has emerged as a prominent approach for collaborative training of machine learning models across distributed clients.
We introduce FedCAda, an innovative federated client adaptive algorithm designed to tackle this challenge.
We demonstrate that FedCAda outperforms the state-of-the-art methods in terms of adaptability, convergence, stability, and overall performance.
arXiv Detail & Related papers (2024-05-20T06:12:33Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Binary Federated Learning with Client-Level Differential Privacy [7.854806519515342]
Federated learning (FL) is a privacy-preserving collaborative learning framework.
Existing FL systems typically adopt Federated Average (FedAvg) as the training algorithm.
We propose a communication-efficient FL training algorithm with differential privacy guarantee.
arXiv Detail & Related papers (2023-08-07T06:07:04Z) - An Efficient and Multi-private Key Secure Aggregation for Federated Learning [41.29971745967693]
We propose an efficient and multi-private key secure aggregation scheme for federated learning.
Specifically, we skillfully modify the variant ElGamal encryption technique to achieve homomorphic addition operation.
For the high dimensional deep model parameter, we introduce a super-increasing sequence to compress multi-dimensional data into 1-D.
arXiv Detail & Related papers (2023-06-15T09:05:36Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
We propose a general learning framework for the protection mechanisms that protects privacy via distorting model parameters.
It can achieve personalized utility-privacy trade-off for each model parameter, on each client, at each communication round in federated learning.
arXiv Detail & Related papers (2023-05-24T13:44:02Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
Decentralized optimization is the basic building block of modern collaborative machine learning, distributed estimation and control, and large-scale sensing.
Since involved data, privacy protection has become an increasingly pressing need in the implementation of decentralized optimization algorithms.
arXiv Detail & Related papers (2022-05-08T14:38:23Z) - Automatic tuning of hyper-parameters of reinforcement learning
algorithms using Bayesian optimization with behavioral cloning [0.0]
In reinforcement learning (RL), the information content of data gathered by the learning agent is dependent on the setting of many hyper- parameters.
In this work, a novel approach for autonomous hyper- parameter setting using Bayesian optimization is proposed.
Experiments reveal promising results compared to other manual tweaking and optimization-based approaches.
arXiv Detail & Related papers (2021-12-15T13:10:44Z) - Precision-Weighted Federated Learning [1.8160945635344528]
We propose a novel algorithm that takes into account the variance of the gradients when computing the weighted average of the parameters of models trained in a Federated Learning setting.
Our method was evaluated using standard image classification datasets with two different data partitioning strategies (IID/non-IID) to measure the performance and speed of our method in resource-constrained environments.
arXiv Detail & Related papers (2021-07-20T17:17:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.