Critical Fermions are Universal Embezzlers
- URL: http://arxiv.org/abs/2406.11747v2
- Date: Fri, 2 Aug 2024 13:31:00 GMT
- Title: Critical Fermions are Universal Embezzlers
- Authors: Lauritz van Luijk, Alexander Stottmeister, Henrik Wilming,
- Abstract summary: We show that universal embezzlers are ubiquitous in many-body physics.
The same property holds in locally-interacting, dual spin chains via the Jordan-Wigner transformation.
- Score: 44.99833362998488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Universal embezzlers are bipartite quantum systems from which any entangled state may be extracted to arbitrary precision using local operations while perturbing the state of the system arbitrarily little. Here, we show that universal embezzlers are ubiquitous in many-body physics: The ground state sector of every local, translation-invariant, and critical free-fermionic many-body system on a one-dimensional lattice is a universal embezzler if bi-partitioned into two half-chains. The same property holds in locally-interacting, dual spin chains via the Jordan-Wigner transformation. Universal embezzlement manifests already for finite system sizes, not only in the thermodynamic limit: For any finite error and any targeted entangled state, a finite length of the chain is sufficient to embezzle said state within the given error. On a technical level, our main result establishes that the half-chain observable algebras associated with ground state sectors of the given models are type III$_1$ factors.
Related papers
- Localization transitions in quadratic systems without quantum chaos [0.0]
We study the one-dimensional Anderson and Wannier-Stark models that exhibit eigenstate transitions from localization in quasimomentum space to localization in position space.
We show that the transition point may exhibit an unconventional character of Janus type, i.e., some measures hint at the RMT-like universality emerging at the transition point, while others depart from it.
Our results hint at rich diversity of volume-law eigenstate entanglement entropies in quadratic systems that are not maximally entangled.
arXiv Detail & Related papers (2024-10-07T14:29:32Z) - Multipartite Embezzlement of Entanglement [44.99833362998488]
Embezzlement of entanglement refers to the task of extracting entanglement from an entanglement resource via local operations and without communication.
We show that finite-dimensional approximations of multipartite embezzling states form multipartite embezzling families.
We discuss our results in the context of quantum field theory and quantum many-body physics.
arXiv Detail & Related papers (2024-09-11T22:14:22Z) - Embezzlement of entanglement, quantum fields, and the classification of von Neumann algebras [41.94295877935867]
We study the quantum information theoretic task of embezzlement of entanglement in the setting of von Neumann algebras.
We quantify the performance of a given resource state by the worst-case error.
Our findings have implications for relativistic quantum field theory, where type III algebras naturally appear.
arXiv Detail & Related papers (2024-01-14T14:22:54Z) - Duality between open systems and closed bilayer systems, and thermofield double states as quantum many-body scars [49.1574468325115]
We find a duality between open many-body systems governed by the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation.
Under this duality, the identity operator on the open system side maps to the thermofield double state.
We identify broad classes of many-body open systems with nontrivial explicit eigen operators $Q$ of the Lindbladian superoperator.
arXiv Detail & Related papers (2023-04-06T15:38:53Z) - Growth of entanglement of generic states under dual-unitary dynamics [77.34726150561087]
Dual-unitary circuits are a class of locally-interacting quantum many-body systems.
In particular, they admit a class of solvable" initial states for which, in the thermodynamic limit, one can access the full non-equilibrium dynamics.
We show that in this case the entanglement increment during a time step is sub-maximal for finite times, however, it approaches the maximal value in the infinite-time limit.
arXiv Detail & Related papers (2022-07-29T18:20:09Z) - Emergence of Fermi's Golden Rule [55.73970798291771]
Fermi's Golden Rule (FGR) applies in the limit where an initial quantum state is weakly coupled to a continuum of other final states overlapping its energy.
Here we investigate what happens away from this limit, where the set of final states is discrete, with a nonzero mean level spacing.
arXiv Detail & Related papers (2022-06-01T18:35:21Z) - Onset of many-body quantum chaos due to breaking integrability [0.0]
We argue that the onset of quantum chaos can be described as a Fock-space delocalization process.
The integrability-breaking perturbation introduces hopping in this Fock space, and chaos sets in when this hopping delocalizes the many-body eigenstates in this space.
In either case, the perturbation strength at the onset of chaos scales to zero in the usual thermodynamic limit.
arXiv Detail & Related papers (2021-12-29T18:58:09Z) - Separability and entanglement in superpositions of quantum states [0.0]
We study the superpositions of a pure entangled state and a pure product state, when the amplitudes corresponding to the states appearing in any superposition are nonzero.
All such superpositions produce only entangled states if the initial entangled state has Schmidt rank three or higher.
We find that conditional inseparability of superpositions help in identifying strategies for conclusive local discrimination of shared quantum ensembles.
arXiv Detail & Related papers (2021-08-04T19:48:29Z) - Reachability in Controlled Markovian Quantum Systems: An
Operator-Theoretic Approach [0.0]
We show that for global and local switchable coupling to a temperature-zero bath one can generate every quantum state from every initial state up to arbitrary precision.
We also present an inclusion for non-zero temperatures as a consequence of our results on d-majorization.
arXiv Detail & Related papers (2020-12-07T07:43:03Z) - Entropy scaling law and the quantum marginal problem [0.0]
Quantum many-body states that frequently appear in physics often obey an entropy scaling law.
We prove a restricted version of this conjecture for translationally invariant systems in two spatial dimensions.
We derive a closed-form expression for the maximum entropy density compatible with those marginals.
arXiv Detail & Related papers (2020-10-14T22:30:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.