TMFNet: Two-Stream Multi-Channels Fusion Networks for Color Image Operation Chain Detection
- URL: http://arxiv.org/abs/2409.07701v1
- Date: Thu, 12 Sep 2024 02:04:26 GMT
- Title: TMFNet: Two-Stream Multi-Channels Fusion Networks for Color Image Operation Chain Detection
- Authors: Yakun Niu, Lei Tan, Lei Zhang, Xianyu Zuo,
- Abstract summary: We propose a novel two-stream multi-channels fusion network for color image operation chain detection.
The proposed method achieves state-of-the-art generalization ability while maintaining robustness to JPEG compression.
- Score: 9.346492393908322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image operation chain detection techniques have gained increasing attention recently in the field of multimedia forensics. However, existing detection methods suffer from the generalization problem. Moreover, the channel correlation of color images that provides additional forensic evidence is often ignored. To solve these issues, in this article, we propose a novel two-stream multi-channels fusion networks for color image operation chain detection in which the spatial artifact stream and the noise residual stream are explored in a complementary manner. Specifically, we first propose a novel deep residual architecture without pooling in the spatial artifact stream for learning the global features representation of multi-channel correlation. Then, a set of filters is designed to aggregate the correlation information of multi-channels while capturing the low-level features in the noise residual stream. Subsequently, the high-level features are extracted by the deep residual model. Finally, features from the two streams are fed into a fusion module, to effectively learn richer discriminative representations of the operation chain. Extensive experiments show that the proposed method achieves state-of-the-art generalization ability while maintaining robustness to JPEG compression. The source code used in these experiments will be released at https://github.com/LeiTan-98/TMFNet.
Related papers
- Dif-Fusion: Towards High Color Fidelity in Infrared and Visible Image
Fusion with Diffusion Models [54.952979335638204]
We propose a novel method with diffusion models, termed as Dif-Fusion, to generate the distribution of the multi-channel input data.
Our method is more effective than other state-of-the-art image fusion methods, especially in color fidelity.
arXiv Detail & Related papers (2023-01-19T13:37:19Z) - CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for
Multi-Modality Image Fusion [138.40422469153145]
We propose a novel Correlation-Driven feature Decomposition Fusion (CDDFuse) network.
We show that CDDFuse achieves promising results in multiple fusion tasks, including infrared-visible image fusion and medical image fusion.
arXiv Detail & Related papers (2022-11-26T02:40:28Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - Multi-Scale Feature Fusion: Learning Better Semantic Segmentation for
Road Pothole Detection [9.356003255288417]
This paper presents a novel pothole detection approach based on single-modal semantic segmentation.
It first extracts visual features from input images using a convolutional neural network.
A channel attention module then reweighs the channel features to enhance the consistency of different feature maps.
arXiv Detail & Related papers (2021-12-24T15:07:47Z) - Hyperspectral Band Selection for Multispectral Image Classification with
Convolutional Networks [0.0]
We propose a novel band selection method to select a reduced set of wavelengths from hyperspectral images.
We show that our method produces more suitable results for a multispectral sensor design.
arXiv Detail & Related papers (2021-06-01T17:24:35Z) - Generalizing Face Forgery Detection with High-frequency Features [63.33397573649408]
Current CNN-based detectors tend to overfit to method-specific color textures and thus fail to generalize.
We propose to utilize the high-frequency noises for face forgery detection.
The first is the multi-scale high-frequency feature extraction module that extracts high-frequency noises at multiple scales.
The second is the residual-guided spatial attention module that guides the low-level RGB feature extractor to concentrate more on forgery traces from a new perspective.
arXiv Detail & Related papers (2021-03-23T08:19:21Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z) - ADRN: Attention-based Deep Residual Network for Hyperspectral Image
Denoising [52.01041506447195]
We propose an attention-based deep residual network to learn a mapping from noisy HSI to the clean one.
Experimental results demonstrate that our proposed ADRN scheme outperforms the state-of-the-art methods both in quantitative and visual evaluations.
arXiv Detail & Related papers (2020-03-04T08:36:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.