論文の概要: DSBench: How Far Are Data Science Agents to Becoming Data Science Experts?
- arxiv url: http://arxiv.org/abs/2409.07703v1
- Date: Thu, 12 Sep 2024 02:08:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 18:02:00.554053
- Title: DSBench: How Far Are Data Science Agents to Becoming Data Science Experts?
- Title(参考訳): DSBench: データサイエンスのエージェントはどこまでデータサイエンスの専門家になるのか?
- Authors: Liqiang Jing, Zhehui Huang, Xiaoyang Wang, Wenlin Yao, Wenhao Yu, Kaixin Ma, Hongming Zhang, Xinya Du, Dong Yu,
- Abstract要約: 現実的なタスクでデータサイエンスエージェントを評価するためのベンチマークであるDSBenchを紹介する。
このベンチマークには、466のデータ分析タスクと、EloquenceとKaggleのコンペからソースされた74のデータモデリングタスクが含まれている。
現状のLLM, LVLM, エージェントを評価したところ, 最高のエージェントはデータ解析タスクの34.12%しか解決できず, RPG(Relative Performance Gap)は34.74%であった。
- 参考スコア(独自算出の注目度): 58.330879414174476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) and Large Vision-Language Models (LVLMs) have demonstrated impressive language/vision reasoning abilities, igniting the recent trend of building agents for targeted applications such as shopping assistants or AI software engineers. Recently, many data science benchmarks have been proposed to investigate their performance in the data science domain. However, existing data science benchmarks still fall short when compared to real-world data science applications due to their simplified settings. To bridge this gap, we introduce DSBench, a comprehensive benchmark designed to evaluate data science agents with realistic tasks. This benchmark includes 466 data analysis tasks and 74 data modeling tasks, sourced from Eloquence and Kaggle competitions. DSBench offers a realistic setting by encompassing long contexts, multimodal task backgrounds, reasoning with large data files and multi-table structures, and performing end-to-end data modeling tasks. Our evaluation of state-of-the-art LLMs, LVLMs, and agents shows that they struggle with most tasks, with the best agent solving only 34.12% of data analysis tasks and achieving a 34.74% Relative Performance Gap (RPG). These findings underscore the need for further advancements in developing more practical, intelligent, and autonomous data science agents.
- Abstract(参考訳): 大規模言語モデル(LLM)とLVLM(Large Vision-Language Models)は、ショッピングアシスタントやAIソフトウェアエンジニアなど、ターゲットとするアプリケーションのためのエージェントを構築する最近のトレンドに着目する、印象的な言語/ビジョン推論能力を示している。
近年,データサイエンス分野におけるその性能を調べるために,多くのデータサイエンスベンチマークが提案されている。
しかし、既存のデータサイエンスベンチマークは、設定が単純化されたために、実際のデータサイエンスアプリケーションと比較しても、まだ不足している。
このギャップを埋めるために、現実的なタスクでデータサイエンスエージェントを評価するために設計された包括的なベンチマークであるDSBenchを紹介する。
このベンチマークには、466のデータ分析タスクと、EloquenceとKaggleのコンペからソースされた74のデータモデリングタスクが含まれている。
DSBenchは、長いコンテキスト、マルチモーダルタスクのバックグラウンド、大きなデータファイルとマルチテーブル構造による推論、エンドツーエンドのデータモデリングタスクの実行による現実的な設定を提供する。
最先端のLLM、LVLM、エージェントを評価したところ、最も優れたエージェントはデータ分析タスクの34.12%しか解決できず、34.74%の相対パフォーマンスギャップ(RPG)を達成した。
これらの発見は、より実用的でインテリジェントで自律的なデータサイエンスエージェントを開発するためのさらなる進歩の必要性を浮き彫りにしている。
関連論文リスト
- BabelBench: An Omni Benchmark for Code-Driven Analysis of Multimodal and Multistructured Data [61.936320820180875]
大規模言語モデル(LLM)は、様々な領域でますます重要になっている。
BabelBenchは、コード実行によるマルチモーダルなマルチ構造化データ管理におけるLLMの熟練度を評価する革新的なベンチマークフレームワークである。
BabelBenchの実験結果から,ChatGPT 4のような最先端モデルでさえ,大幅な改善の余地があることが示唆された。
論文 参考訳(メタデータ) (2024-10-01T15:11:24Z) - MMSci: A Dataset for Graduate-Level Multi-Discipline Multimodal Scientific Understanding [59.41495657570397]
このデータセットには、スキーマ図、シミュレーション画像、マクロ/顕微鏡写真、実験的可視化などの図が含まれている。
我々は,6つのプロプライエタリモデルと10以上のオープンソースモデルを評価し,科学的フィギュアキャプションと複数選択質問のベンチマークを開発した。
データセットとベンチマークは、さらなる研究をサポートするためにリリースされる予定だ。
論文 参考訳(メタデータ) (2024-07-06T00:40:53Z) - DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
我々は、データ駆動探索の多段階プロセスを形式化する最初の包括的なベンチマークであるDiscoveryBenchを紹介する。
我々のベンチマークには、社会学や工学などの6つの分野にまたがる264のタスクが含まれている。
私たちのベンチマークでは、自律的なデータ駆動型発見の課題を説明し、コミュニティが前進するための貴重なリソースとして役立ちます。
論文 参考訳(メタデータ) (2024-07-01T18:58:22Z) - CMDBench: A Benchmark for Coarse-to-fine Multimodal Data Discovery in Compound AI Systems [10.71630696651595]
知識集約的なタスクを達成するエージェントとしてLLMを使用する複合AIシステム(CAS)は、データベースやAIコミュニティにおいて大きな関心を集めている。
マルチモーダルデータソースのサイロは、そのタスクを達成するための適切なデータソースを特定するのを困難にしている。
我々はエンタープライズデータプラットフォームの複雑さをモデル化したベンチマークであるCMDBenchを提案する。
論文 参考訳(メタデータ) (2024-06-02T01:10:41Z) - DataAgent: Evaluating Large Language Models' Ability to Answer Zero-Shot, Natural Language Queries [0.0]
OpenAIのGPT-3.5をLanguage Data Scientist(LDS)として評価する
このモデルは、さまざまなベンチマークデータセットでテストされ、そのパフォーマンスを複数の標準で評価した。
論文 参考訳(メタデータ) (2024-03-29T22:59:34Z) - Data Interpreter: An LLM Agent For Data Science [43.13678782387546]
LLM(Large Language Model)ベースのエージェントは多くのアプリケーションで有効性を示している。
しかし、長期的な相互接続タスク、動的なデータ調整、ドメインの専門知識の解決を必要とするデータサイエンスのシナリオでの利用は、依然として困難である。
本稿では,LLMをベースとしたエージェントであるData Interpreterについて述べる。
論文 参考訳(メタデータ) (2024-02-28T19:49:55Z) - Are LLMs Capable of Data-based Statistical and Causal Reasoning? Benchmarking Advanced Quantitative Reasoning with Data [89.2410799619405]
実世界のデータを用いた統計的および因果推論において,大規模言語モデルの能力を評価するために,データベンチマークを用いた定量的推論を導入する。
このベンチマークは、教科書、オンライン学習教材、学術論文のデータシートを伴う411の質問のデータセットで構成されている。
データとテキストに対するモデルの量的推論能力を比較するために、ベンチマークを290のテキストのみの質問、すなわちQRTextで強化する。
論文 参考訳(メタデータ) (2024-02-27T16:15:03Z) - MatPlotAgent: Method and Evaluation for LLM-Based Agentic Scientific Data Visualization [86.61052121715689]
MatPlotAgentは、科学的データ可視化タスクを自動化するために設計された、モデルに依存しないフレームワークである。
MatPlotBenchは、100人の検証されたテストケースからなる高品質なベンチマークである。
論文 参考訳(メタデータ) (2024-02-18T04:28:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。