From Uncertainty to Clarity: Uncertainty-Guided Class-Incremental Learning for Limited Biomedical Samples via Semantic Expansion
- URL: http://arxiv.org/abs/2409.07757v1
- Date: Thu, 12 Sep 2024 05:22:45 GMT
- Title: From Uncertainty to Clarity: Uncertainty-Guided Class-Incremental Learning for Limited Biomedical Samples via Semantic Expansion
- Authors: Yifei Yao, Hanrong Zhang,
- Abstract summary: We propose a class-incremental learning method under limited samples in the biomedical field.
Our method achieves optimal performance, surpassing state-of-the-art methods by as much as 53.54% in accuracy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In real-world clinical settings, data distributions evolve over time, with a continuous influx of new, limited disease cases. Therefore, class incremental learning is of great significance, i.e., deep learning models are required to learn new class knowledge while maintaining accurate recognition of previous diseases. However, traditional deep neural networks often suffer from severe forgetting of prior knowledge when adapting to new data unless trained from scratch, which undesirably costs much time and computational burden. Additionally, the sample sizes for different diseases can be highly imbalanced, with newly emerging diseases typically having much fewer instances, consequently causing the classification bias. To tackle these challenges, we are the first to propose a class-incremental learning method under limited samples in the biomedical field. First, we propose a novel cumulative entropy prediction module to measure the uncertainty of the samples, of which the most uncertain samples are stored in a memory bank as exemplars for the model's later review. Furthermore, we theoretically demonstrate its effectiveness in measuring uncertainty. Second, we developed a fine-grained semantic expansion module through various augmentations, leading to more compact distributions within the feature space and creating sufficient room for generalization to new classes. Besides, a cosine classifier is utilized to mitigate classification bias caused by imbalanced datasets. Across four imbalanced data distributions over two datasets, our method achieves optimal performance, surpassing state-of-the-art methods by as much as 53.54% in accuracy.
Related papers
- CCSI: Continual Class-Specific Impression for Data-free Class Incremental Learning [22.37848405465699]
Class incremental learning offers a promising solution by adapting a deep network trained on specific disease classes to handle new diseases.
Prior proposed methodologies to overcome this require perpetual storage of previous samples.
We propose a novel data-free class incremental learning framework that utilizes data synthesis on learned classes instead of data storage from previous classes.
arXiv Detail & Related papers (2024-06-09T03:52:21Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Few-Shot Class-Incremental Learning with Prior Knowledge [94.95569068211195]
We propose Learning with Prior Knowledge (LwPK) to enhance the generalization ability of the pre-trained model.
Experimental results indicate that LwPK effectively enhances the model resilience against catastrophic forgetting.
arXiv Detail & Related papers (2024-02-02T08:05:35Z) - Continual Learning with Bayesian Model based on a Fixed Pre-trained
Feature Extractor [55.9023096444383]
Current deep learning models are characterised by catastrophic forgetting of old knowledge when learning new classes.
Inspired by the process of learning new knowledge in human brains, we propose a Bayesian generative model for continual learning.
arXiv Detail & Related papers (2022-04-28T08:41:51Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - The unreasonable effectiveness of Batch-Norm statistics in addressing
catastrophic forgetting across medical institutions [8.244654685687054]
We investigate trade-off between model refinement and retention of previously learned knowledge.
We propose a simple yet effective approach, adapting Elastic weight consolidation (EWC) using the global batch normalization statistics of the original dataset.
arXiv Detail & Related papers (2020-11-16T16:57:05Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Regularizing Class-wise Predictions via Self-knowledge Distillation [80.76254453115766]
We propose a new regularization method that penalizes the predictive distribution between similar samples.
This results in regularizing the dark knowledge (i.e., the knowledge on wrong predictions) of a single network.
Our experimental results on various image classification tasks demonstrate that the simple yet powerful method can significantly improve the generalization ability.
arXiv Detail & Related papers (2020-03-31T06:03:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.