Lagrange Duality and Compound Multi-Attention Transformer for Semi-Supervised Medical Image Segmentation
- URL: http://arxiv.org/abs/2409.07793v1
- Date: Thu, 12 Sep 2024 06:52:46 GMT
- Title: Lagrange Duality and Compound Multi-Attention Transformer for Semi-Supervised Medical Image Segmentation
- Authors: Fuchen Zheng, Quanjun Li, Weixuan Li, Xuhang Chen, Yihang Dong, Guoheng Huang, Chi-Man Pun, Shoujun Zhou,
- Abstract summary: We propose a Lagrange Duality Consistency (LDC) Loss, integrated with Boundary-Aware Contrastive Loss, as the overall training objective for semi-supervised learning.
We also introduce CMAformer, a novel network that synergizes the strengths of ResUNet and Transformer.
Overall, our results indicate that CMAformer, combined with the feature fusion framework and the new consistency loss, demonstrates strong complementarity in semi-supervised learning ensembles.
- Score: 27.758157788769253
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image segmentation, a critical application of semantic segmentation in healthcare, has seen significant advancements through specialized computer vision techniques. While deep learning-based medical image segmentation is essential for assisting in medical diagnosis, the lack of diverse training data causes the long-tail problem. Moreover, most previous hybrid CNN-ViT architectures have limited ability to combine various attentions in different layers of the Convolutional Neural Network. To address these issues, we propose a Lagrange Duality Consistency (LDC) Loss, integrated with Boundary-Aware Contrastive Loss, as the overall training objective for semi-supervised learning to mitigate the long-tail problem. Additionally, we introduce CMAformer, a novel network that synergizes the strengths of ResUNet and Transformer. The cross-attention block in CMAformer effectively integrates spatial attention and channel attention for multi-scale feature fusion. Overall, our results indicate that CMAformer, combined with the feature fusion framework and the new consistency loss, demonstrates strong complementarity in semi-supervised learning ensembles. We achieve state-of-the-art results on multiple public medical image datasets. Example code are available at: \url{https://github.com/lzeeorno/Lagrange-Duality-and-CMAformer}.
Related papers
- SMAFormer: Synergistic Multi-Attention Transformer for Medical Image Segmentation [28.490211130600702]
We introduce SMAFormer, a Transformer-based architecture that fuses multiple attention mechanisms for enhanced segmentation of small tumors and organs.
The architecture comprises two pivotal components. First, a Synergistic Multi-Attention (SMA) Transformer block is proposed, which has the benefits of Pixel Attention, Channel Attention, and Spatial Attention for feature enrichment.
Second, addressing the challenge of information loss incurred during attention mechanism transitions and feature fusion, we design a Feature Fusion Modulator. This module bolsters the integration between the channel and spatial attention by mitigating reshaping-induced information attrition.
arXiv Detail & Related papers (2024-08-31T04:23:33Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Scale-aware Super-resolution Network with Dual Affinity Learning for
Lesion Segmentation from Medical Images [50.76668288066681]
We present a scale-aware super-resolution network to adaptively segment lesions of various sizes from low-resolution medical images.
Our proposed network achieved consistent improvements compared to other state-of-the-art methods.
arXiv Detail & Related papers (2023-05-30T14:25:55Z) - Multi-Level Global Context Cross Consistency Model for Semi-Supervised
Ultrasound Image Segmentation with Diffusion Model [0.0]
We propose a framework that uses images generated by a Latent Diffusion Model (LDM) as unlabeled images for semi-supervised learning.
Our approach enables the effective transfer of probability distribution knowledge to the segmentation network, resulting in improved segmentation accuracy.
arXiv Detail & Related papers (2023-05-16T14:08:24Z) - M$^{2}$SNet: Multi-scale in Multi-scale Subtraction Network for Medical
Image Segmentation [73.10707675345253]
We propose a general multi-scale in multi-scale subtraction network (M$2$SNet) to finish diverse segmentation from medical image.
Our method performs favorably against most state-of-the-art methods under different evaluation metrics on eleven datasets of four different medical image segmentation tasks.
arXiv Detail & Related papers (2023-03-20T06:26:49Z) - TransFusion: Multi-view Divergent Fusion for Medical Image Segmentation
with Transformers [8.139069987207494]
We present TransFusion, a Transformer-based architecture to merge divergent multi-view imaging information using convolutional layers and powerful attention mechanisms.
In particular, the Divergent Fusion Attention (DiFA) module is proposed for rich cross-view context modeling and semantic dependency mining.
arXiv Detail & Related papers (2022-03-21T04:02:54Z) - MEDUSA: Multi-scale Encoder-Decoder Self-Attention Deep Neural Network
Architecture for Medical Image Analysis [71.2022403915147]
We introduce MEDUSA, a multi-scale encoder-decoder self-attention mechanism tailored for medical image analysis.
We obtain state-of-the-art performance on challenging medical image analysis benchmarks including COVIDx, RSNA RICORD, and RSNA Pneumonia Challenge.
arXiv Detail & Related papers (2021-10-12T15:05:15Z) - TransAttUnet: Multi-level Attention-guided U-Net with Transformer for
Medical Image Segmentation [33.45471457058221]
This paper proposes a novel Transformer based medical image semantic segmentation framework called TransAttUnet.
In particular, we establish additional multi-scale skip connections between decoder blocks to aggregate the different semantic-scale upsampling features.
Our method consistently outperforms the state-of-the-art baselines.
arXiv Detail & Related papers (2021-07-12T09:17:06Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.