論文の概要: Conformal Distributed Remote Inference in Sensor Networks Under Reliability and Communication Constraints
- arxiv url: http://arxiv.org/abs/2409.07902v1
- Date: Thu, 12 Sep 2024 10:12:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 16:58:31.300686
- Title: Conformal Distributed Remote Inference in Sensor Networks Under Reliability and Communication Constraints
- Title(参考訳): 信頼性・通信制約下におけるセンサネットワークのコンフォーマル分散リモート推論
- Authors: Meiyi Zhu, Matteo Zecchin, Sangwoo Park, Caili Guo, Chunyan Feng, Petar Popovski, Osvaldo Simeone,
- Abstract要約: 通信制約付き分散共形リスク制御(CD-CRC)
CD-CRCは通信制約下でのセンサネットワークのための新しい意思決定フレームワークである。
- 参考スコア(独自算出の注目度): 61.62410595953275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents communication-constrained distributed conformal risk control (CD-CRC) framework, a novel decision-making framework for sensor networks under communication constraints. Targeting multi-label classification problems, such as segmentation, CD-CRC dynamically adjusts local and global thresholds used to identify significant labels with the goal of ensuring a target false negative rate (FNR), while adhering to communication capacity limits. CD-CRC builds on online exponentiated gradient descent to estimate the relative quality of the observations of different sensors, and on online conformal risk control (CRC) as a mechanism to control local and global thresholds. CD-CRC is proved to offer deterministic worst-case performance guarantees in terms of FNR and communication overhead, while the regret performance in terms of false positive rate (FPR) is characterized as a function of the key hyperparameters. Simulation results highlight the effectiveness of CD-CRC, particularly in communication resource-constrained environments, making it a valuable tool for enhancing the performance and reliability of distributed sensor networks.
- Abstract(参考訳): 本稿では,通信制約下でのセンサネットワークの新たな意思決定フレームワークであるCD-CRCフレームワークを提案する。
セグメンテーションなどのマルチラベル分類問題をターゲットに、CD-CRCは、通信容量制限を順守しつつ、ターゲット偽陰性率(FNR)を保証することを目的として、重要なラベルを特定するために使用される局所的および大域的閾値を動的に調整する。
CD-CRCは、異なるセンサーの観測の相対的品質を推定するために、オンライン指数勾配勾配勾配に基づいて構築され、ローカルおよびグローバルしきい値を制御するメカニズムとして、オンライン適合リスク制御(CRC)上に構築されている。
CD-CRCは、FNRと通信オーバヘッドの観点から決定論的最悪の性能保証を提供するのに対し、偽陽性率(FPR)における後悔性能は、鍵ハイパーパラメータの関数として特徴付けられる。
シミュレーションの結果は,CD-CRCの有効性,特に通信資源に制約のある環境での有効性を強調し,分散センサネットワークの性能と信頼性を高める上で有用なツールである。
関連論文リスト
- Digital Twin-Assisted Data-Driven Optimization for Reliable Edge Caching in Wireless Networks [60.54852710216738]
我々はD-RECと呼ばれる新しいデジタルツインアシスト最適化フレームワークを導入し、次世代無線ネットワークにおける信頼性の高いキャッシュを実現する。
信頼性モジュールを制約付き決定プロセスに組み込むことで、D-RECは、有利な制約に従うために、アクション、報酬、状態を適応的に調整することができる。
論文 参考訳(メタデータ) (2024-06-29T02:40:28Z) - Latent Diffusion Model-Enabled Real-Time Semantic Communication Considering Semantic Ambiguities and Channel Noises [18.539501941328393]
本稿では, 遅延拡散モデル対応SemComシステムを構築し, 既存システムと比較して3つの改良点を提案する。
軽量な単層遅延空間変換アダプタは、送信機でのワンショット学習を完了させる。
終端整合蒸留法を用いて, 潜時空間で訓練した拡散模型を蒸留する。
論文 参考訳(メタデータ) (2024-06-09T23:39:31Z) - Leveraging Low-Rank and Sparse Recurrent Connectivity for Robust
Closed-Loop Control [63.310780486820796]
繰り返し接続のパラメータ化が閉ループ設定のロバスト性にどのように影響するかを示す。
パラメータが少ないクローズドフォーム連続時間ニューラルネットワーク(CfCs)は、フルランクで完全に接続されたニューラルネットワークよりも優れています。
論文 参考訳(メタデータ) (2023-10-05T21:44:18Z) - Perimeter Control with Heterogeneous Metering Rates for Cordon Signals: A Physics-Regularized Multi-Agent Reinforcement Learning Approach [12.86346901414289]
過飽和環境下での都市道路網の制御に対処するための周辺制御(PC)戦略が提案されている。
本稿では,MARL(Multi-Agent Reinforcement Learning)に基づく交通信号制御フレームワークを活用し,PC問題を分解する。
MARLフレームワークの物理正則化手法は,分散コードン信号制御装置がグローバルネットワークの状態を認識していることを確実にするために提案される。
論文 参考訳(メタデータ) (2023-08-24T13:51:16Z) - Learning to Sail Dynamic Networks: The MARLIN Reinforcement Learning
Framework for Congestion Control in Tactical Environments [53.08686495706487]
本稿では, 正確な並列化可能なエミュレーション環境を利用して, 戦術ネットワークの環境を再現するRLフレームワークを提案する。
衛星通信(SATCOM)とUHFワイドバンド(UHF)の無線リンク間のボトルネックリンク遷移を再現した条件下で、MARLINエージェントを訓練することにより、我々のRL学習フレームワークを評価する。
論文 参考訳(メタデータ) (2023-06-27T16:15:15Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
本研究では,モデルベース深層学習(MBDL)に基づく実用的なRSMA受信機の設計を提案する。
MBDL受信機は、符号なしシンボル誤り率(SER)、リンクレベルシミュレーション(LLS)によるスループット性能、平均トレーニングオーバーヘッドの観点から評価される。
その結果,MBDLはCSIRが不完全なSIC受信機よりも優れていた。
論文 参考訳(メタデータ) (2022-05-02T12:23:55Z) - Learning Resilient Radio Resource Management Policies with Graph Neural
Networks [124.89036526192268]
我々は、ユーザ当たりの最小容量制約でレジリエントな無線リソース管理問題を定式化する。
有限個のパラメータ集合を用いてユーザ選択と電力制御ポリシーをパラメータ化できることを示す。
このような適応により,提案手法は平均レートと5番目のパーセンタイルレートとの良好なトレードオフを実現する。
論文 参考訳(メタデータ) (2022-03-07T19:40:39Z) - Covert Communications via Adversarial Machine Learning and
Reconfigurable Intelligent Surfaces [46.34482158291128]
再構成可能なインテリジェントサーフェス(RIS)は、信号の散乱と反射プロファイルを制御するために単位セルの配列に依存する。
本稿では,RISの存在下での隠蔽通信について考察する。
論文 参考訳(メタデータ) (2021-12-21T18:23:57Z) - Cross-Layered Distributed Data-driven Framework For Enhanced Smart Grid
Cyber-Physical Security [3.8237485961848128]
Adaptive Statisticsを使用したクロスレイヤアンサンブルCorrDetが紹介される。
故障したSG測定データの検出と、ネットワーク間時間と送信遅延の一貫性の欠如を統合する。
その結果,CECD-ASは複数のFalse Data Injection, Denial of Service (DoS) および Man In The Middle (MITM) 攻撃を高いF1スコアで検出できることがわかった。
論文 参考訳(メタデータ) (2021-11-10T00:00:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。