論文の概要: Collaborative Automatic Modulation Classification via Deep Edge Inference for Hierarchical Cognitive Radio Networks
- arxiv url: http://arxiv.org/abs/2409.07946v2
- Date: Sat, 14 Sep 2024 15:49:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 15:56:11.127912
- Title: Collaborative Automatic Modulation Classification via Deep Edge Inference for Hierarchical Cognitive Radio Networks
- Title(参考訳): 階層型認知無線ネットワークのためのディープエッジ推論による協調的自動変調分類
- Authors: Chaowei He, Peihao Dong, Fuhui Zhou, Qihui Wu,
- Abstract要約: 階層的認知無線ネットワークでは、エッジまたはクラウドサーバは、エッジデバイスが収集したデータを変調分類に利用する。
本稿では、エッジデバイスとインテリジェントな共推論のためのエッジサーバを共同で動員するエッジ学習(EL)ベースのフレームワークを提案する。
- 参考スコア(独自算出の注目度): 19.303303020775555
- License:
- Abstract: In hierarchical cognitive radio networks, edge or cloud servers utilize the data collected by edge devices for modulation classification, which, however, is faced with problems of the transmission overhead, data privacy, and computation load. In this article, an edge learning (EL) based framework jointly mobilizing the edge device and the edge server for intelligent co-inference is proposed to realize the collaborative automatic modulation classification (C-AMC) between them. A spectrum semantic compression neural network (SSCNet) with the lightweight structure is designed for the edge device to compress the collected raw data into a compact semantic message that is then sent to the edge server via the wireless channel. On the edge server side, a modulation classification neural network (MCNet) combining bidirectional long short-term memory (Bi-LSTM) and multi-head attention layers is elaborated to determine the modulation type from the noisy semantic message. By leveraging the computation resources of both the edge device and the edge server, high transmission overhead and risks of data privacy leakage are avoided. The simulation results verify the effectiveness of the proposed C-AMC framework, significantly reducing the model size and computational complexity.
- Abstract(参考訳): 階層的認知無線ネットワークでは、エッジサーバやクラウドサーバは、エッジデバイスが収集したデータを変調分類に利用するが、送信オーバーヘッド、データプライバシ、計算負荷といった問題に直面している。
本稿では、エッジデバイスとインテリジェントコ推論のためのエッジサーバを協調的に動員するエッジ学習(EL)ベースのフレームワークを提案し、それら間の協調的な自動変調分類(C-AMC)を実現する。
軽量な構造を持つスペクトルセマンティック圧縮ニューラルネットワーク(SSCNet)は、収集した生データをコンパクトなセマンティックメッセージに圧縮し、無線チャネルを介してエッジサーバに送信するように設計されている。
エッジサーバ側では、双方向長短期メモリ(Bi-LSTM)とマルチヘッドアテンション層を組み合わせた変調分類ニューラルネットワーク(MCNet)を用いて、ノイズセマンティックメッセージから変調タイプを決定する。
エッジデバイスとエッジサーバの両方の計算資源を活用することにより、高い送信オーバーヘッドとデータプライバシリークのリスクを回避することができる。
シミュレーションの結果,提案したC-AMCフレームワークの有効性を検証し,モデルサイズと計算複雑性を大幅に低減した。
関連論文リスト
- Leveraging Federated Learning and Edge Computing for Recommendation
Systems within Cloud Computing Networks [3.36271475827981]
エッジインテリジェンスの鍵となる技術は、フェデレートラーニング(FL)として知られる、プライバシ保護機械学習パラダイムである。
ノード障害とデバイス終了を減らすため、階層的フェデレートラーニング(HFL)フレームワークが提案され、指定されたクラスタリーダが中間モデルアグリゲーションを通じてデータオーナをサポートする。
ユーザエクスペリエンスの品質(QoE)に対するソフトクリックの影響を軽減するため、著者らは、ユーザQoEを包括的なシステムコストとしてモデル化した。
論文 参考訳(メタデータ) (2024-03-05T17:58:26Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
デジタルツイン(DT)は、物理世界の仮想表現と通信(例えば6G)、コンピュータ、人工知能(AI)技術を活用して、多くの接続されたインテリジェンスサービスを実現する。
無線システムは、厳密な通信制約下での情報意思決定を容易にするために意味コミュニケーション(SC)のパラダイムを利用することができる。
DTベースの無線システムでは,因果意味通信(CSC)と呼ばれる新しいフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-04-25T00:15:00Z) - Attention-based Feature Compression for CNN Inference Offloading in Edge
Computing [93.67044879636093]
本稿では,デバイスエッジ共振器におけるCNN推論の計算負荷について検討する。
エンドデバイスにおける効率的な特徴抽出のための新しいオートエンコーダベースのCNNアーキテクチャ(AECNN)を提案する。
実験の結果、AECNNは中間データを約4%の精度で256倍圧縮できることがわかった。
論文 参考訳(メタデータ) (2022-11-24T18:10:01Z) - Task-Oriented Over-the-Air Computation for Multi-Device Edge AI [57.50247872182593]
エッジAIをサポートするための6Gネットワークは、AIタスクの効率的かつ効率的な実行に焦点を当てたタスク指向のテクニックを備えている。
本稿では,マルチデバイススプリット推論システムにおけるタスク指向オーバー・ザ・エア計算(AirComp)方式を提案する。
論文 参考訳(メタデータ) (2022-11-02T16:35:14Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
本稿では,AIモデルの分割推論と統合センシング通信(ISAC)を併用した,新しいマルチインテリジェントエッジ人工レイテンシ(AI)システムについて検討する。
推定精度は近似的だが抽出可能な計量、すなわち判別利得を用いて測定する。
論文 参考訳(メタデータ) (2022-07-03T06:57:07Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Communication-Computation Efficient Device-Edge Co-Inference via AutoML [4.06604174802643]
デバイスエッジのコ推論は、リソース制約のあるモバイルデバイスとエッジサーバの間のディープニューラルネットワークを分割する。
オンデバイスモデルスパーシリティレベルと中間特徴圧縮比は、ワークロードと通信オーバーヘッドに直接的な影響を与える。
深部強化学習(DRL)に基づく新しい自動機械学習(AutoML)フレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-30T06:36:30Z) - Neural Compression and Filtering for Edge-assisted Real-time Object
Detection in Challenged Networks [8.291242737118482]
我々はディープニューラルネットワーク(DNN)を用いた遠隔物体検出支援エッジコンピューティングに焦点をあてる。
無線リンクを介して送信されるデータの量を削減するためのフレームワークを開発する。
提案手法は,パラメータ領域における局所演算とエッジ演算の効果的な中間オプションを示す。
論文 参考訳(メタデータ) (2020-07-31T03:11:46Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
フェデレートラーニング(Federated Learning)は、無線デバイスとのコラボレーションによって、中央サーバでグローバルモデルをトレーニングするための、プライバシ保護のアプローチである。
本稿では,大規模マルチインプット多出力通信システム上でのフェデレーション学習のための圧縮センシング手法を提案する。
論文 参考訳(メタデータ) (2020-03-18T05:56:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。