Enhanced Online Grooming Detection Employing Context Determination and Message-Level Analysis
- URL: http://arxiv.org/abs/2409.07958v1
- Date: Thu, 12 Sep 2024 11:37:34 GMT
- Title: Enhanced Online Grooming Detection Employing Context Determination and Message-Level Analysis
- Authors: Jake Street, Isibor Ihianle, Funminiyi Olajide, Ahmad Lotfi,
- Abstract summary: Online grooming (OG) is a prevalent threat facing predominately children online, with groomers using deceptive methods to prey on the vulnerability of children on social media/messaging platforms.
Existing solutions focus on the signature analysis of child abuse media, which does not effectively address real-time OG detection.
This paper proposes that OG attacks are complex, requiring the identification of specific communication patterns between adults and children.
- Score: 2.424910201171407
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Online Grooming (OG) is a prevalent threat facing predominately children online, with groomers using deceptive methods to prey on the vulnerability of children on social media/messaging platforms. These attacks can have severe psychological and physical impacts, including a tendency towards revictimization. Current technical measures are inadequate, especially with the advent of end-to-end encryption which hampers message monitoring. Existing solutions focus on the signature analysis of child abuse media, which does not effectively address real-time OG detection. This paper proposes that OG attacks are complex, requiring the identification of specific communication patterns between adults and children. It introduces a novel approach leveraging advanced models such as BERT and RoBERTa for Message-Level Analysis and a Context Determination approach for classifying actor interactions, including the introduction of Actor Significance Thresholds and Message Significance Thresholds. The proposed method aims to enhance accuracy and robustness in detecting OG by considering the dynamic and multi-faceted nature of these attacks. Cross-dataset experiments evaluate the robustness and versatility of our approach. This paper's contributions include improved detection methodologies and the potential for application in various scenarios, addressing gaps in current literature and practices.
Related papers
- Detecting Adversarial Attacks in Semantic Segmentation via Uncertainty Estimation: A Deep Analysis [12.133306321357999]
We propose an uncertainty-based method for detecting adversarial attacks on neural networks for semantic segmentation.
We conduct a detailed analysis of uncertainty-based detection of adversarial attacks and various state-of-the-art neural networks.
Our numerical experiments show the effectiveness of the proposed uncertainty-based detection method.
arXiv Detail & Related papers (2024-08-19T14:13:30Z) - Humanizing Machine-Generated Content: Evading AI-Text Detection through Adversarial Attack [24.954755569786396]
We propose a framework for a broader class of adversarial attacks, designed to perform minor perturbations in machine-generated content to evade detection.
We consider two attack settings: white-box and black-box, and employ adversarial learning in dynamic scenarios to assess the potential enhancement of the current detection model's robustness.
The empirical results reveal that the current detection models can be compromised in as little as 10 seconds, leading to the misclassification of machine-generated text as human-written content.
arXiv Detail & Related papers (2024-04-02T12:49:22Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - Exploiting Explainability to Design Adversarial Attacks and Evaluate
Attack Resilience in Hate-Speech Detection Models [0.47334880432883714]
We present an analysis of adversarial robustness exhibited by various hate-speech detection models.
We devise and execute targeted attacks on the text by leveraging the TextAttack tool.
This work paves the way for creating more robust and reliable hate-speech detection systems.
arXiv Detail & Related papers (2023-05-29T19:59:40Z) - MGTBench: Benchmarking Machine-Generated Text Detection [54.81446366272403]
This paper proposes the first benchmark framework for MGT detection against powerful large language models (LLMs)
We show that a larger number of words in general leads to better performance and most detection methods can achieve similar performance with much fewer training samples.
Our findings indicate that the model-based detection methods still perform well in the text attribution task.
arXiv Detail & Related papers (2023-03-26T21:12:36Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Poisoning Attacks and Defenses on Artificial Intelligence: A Survey [3.706481388415728]
Data poisoning attacks represent a type of attack that consists of tampering the data samples fed to the model during the training phase, leading to a degradation in the models accuracy during the inference phase.
This work compiles the most relevant insights and findings found in the latest existing literatures addressing this type of attacks.
A thorough assessment is performed on the reviewed works, comparing the effects of data poisoning on a wide range of ML models in real-world conditions.
arXiv Detail & Related papers (2022-02-21T14:43:38Z) - Learning-based Hybrid Local Search for the Hard-label Textual Attack [53.92227690452377]
We consider a rarely investigated but more rigorous setting, namely hard-label attack, in which the attacker could only access the prediction label.
Based on this observation, we propose a novel hard-label attack, called Learning-based Hybrid Local Search (LHLS) algorithm.
Our LHLS significantly outperforms existing hard-label attacks regarding the attack performance as well as adversary quality.
arXiv Detail & Related papers (2022-01-20T14:16:07Z) - Adversarial Machine Learning In Network Intrusion Detection Domain: A
Systematic Review [0.0]
It has been found that deep learning models are vulnerable to data instances that can mislead the model to make incorrect classification decisions.
This survey explores the researches that employ different aspects of adversarial machine learning in the area of network intrusion detection.
arXiv Detail & Related papers (2021-12-06T19:10:23Z) - Balancing detectability and performance of attacks on the control
channel of Markov Decision Processes [77.66954176188426]
We investigate the problem of designing optimal stealthy poisoning attacks on the control channel of Markov decision processes (MDPs)
This research is motivated by the recent interest of the research community for adversarial and poisoning attacks applied to MDPs, and reinforcement learning (RL) methods.
arXiv Detail & Related papers (2021-09-15T09:13:10Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.