論文の概要: Multiplex Graph Contrastive Learning with Soft Negatives
- arxiv url: http://arxiv.org/abs/2409.08010v1
- Date: Thu, 12 Sep 2024 12:55:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 16:29:19.334614
- Title: Multiplex Graph Contrastive Learning with Soft Negatives
- Title(参考訳): ソフトネガティティブを用いた多重グラフコントラスト学習
- Authors: Zhenhao Zhao, Minhong Zhu, Chen Wang, Sijia Wang, Jiqiang Zhang, Li Chen, Weiran Cai,
- Abstract要約: グラフコントラスト学習(GCL)は、グラフ構造化データから最大一貫した情報を含む結節やグラフ表現を学習することを目指している。
本稿では,MUX-GCLを提案する。MUX-GCLは,マルチプレックス表現を効果的なパッチとして利用する,クロススケールなコントラスト学習パラダイムである。
大規模な実験により、MUX-GCLは公開データセット上で複数の最先端結果をもたらすことが示された。
- 参考スコア(独自算出の注目度): 11.21896531177694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Contrastive Learning (GCL) seeks to learn nodal or graph representations that contain maximal consistent information from graph-structured data. While node-level contrasting modes are dominating, some efforts commence to explore consistency across different scales. Yet, they tend to lose consistent information and be contaminated by disturbing features. Here, we introduce MUX-GCL, a novel cross-scale contrastive learning paradigm that utilizes multiplex representations as effective patches. While this learning mode minimizes contaminating noises, a commensurate contrasting strategy using positional affinities further avoids information loss by correcting false negative pairs across scales. Extensive downstream experiments demonstrate that MUX-GCL yields multiple state-of-the-art results on public datasets. Our theoretical analysis further guarantees the new objective function as a stricter lower bound of mutual information of raw input features and output embeddings, which rationalizes this paradigm. Code is available at https://github.com/MUX-GCL/Code.
- Abstract(参考訳): グラフコントラスト学習(GCL)は、グラフ構造化データから最大一貫した情報を含む結節やグラフ表現を学習することを目指している。
ノードレベルのコントラストモードが支配的だが、いくつかの取り組みは異なるスケールで一貫性を探究する。
しかし、一貫性のある情報を失い、乱れた特徴によって汚染される傾向がある。
本稿では,MUX-GCLを提案する。MUX-GCLは,マルチプレックス表現を効果的なパッチとして利用する,クロススケールなコントラスト学習パラダイムである。
この学習モードは汚染ノイズを最小限に抑えるが、位置親和性を用いたコンメンシュレートコントラスト戦略は、スケールをまたいだ偽陰対を補正することにより、情報損失をさらに回避する。
大規模な下流実験では、MUX-GCLがパブリックデータセット上で複数の最先端結果をもたらすことが示されている。
我々の理論解析は、このパラダイムを合理化する原入力特徴と出力埋め込みの相互情報の厳密な下限として、新たな目的関数をさらに保証している。
コードはhttps://github.com/MUX-GCL/Codeで入手できる。
関連論文リスト
- M2HGCL: Multi-Scale Meta-Path Integrated Heterogeneous Graph Contrastive
Learning [16.391439666603578]
マルチスケールなメタパス統合ヘテロジニアスグラフコントラスト学習(M2HGCL)モデルを提案する。
具体的には、メタパスを拡大し、直接的な隣接情報、初期メタパス隣情報、拡張されたメタパス隣情報とを共同で集約する。
3つの実世界のデータセットに関する広範な実験を通して、M2HGCLが現在の最先端のベースラインモデルより優れていることを示す。
論文 参考訳(メタデータ) (2023-09-03T06:39:56Z) - LightGCL: Simple Yet Effective Graph Contrastive Learning for
Recommendation [9.181689366185038]
グラフニューラルクラスタリングネットワーク(GNN)は、グラフベースのレコメンデータシステムのための強力な学習手法である。
本稿では,単純なグラフコントラスト学習パラダイムであるLightGCLを提案する。
論文 参考訳(メタデータ) (2023-02-16T10:16:21Z) - Adversarial Learning Data Augmentation for Graph Contrastive Learning in
Recommendation [56.10351068286499]
グラフコントラスト学習のための学習可能なデータ拡張法(LDA-GCL)を提案する。
提案手法は,InfoMin と InfoMax の原則に従うデータ強化学習とグラフコントラスト学習を含む。
本手法は,データ拡張とユーザやアイテムの効果的な表現を学習するために,対向損失関数を最適化する。
論文 参考訳(メタデータ) (2023-02-05T06:55:51Z) - Signed Directed Graph Contrastive Learning with Laplacian Augmentation [1.3535770763481905]
グラフの対比学習は、いくつかのグラフマイニングタスクにおいて強力なテクニックとなっている。
本稿では,新しい署名指向グラフコントラスト学習,SDGCLを提案する。
2つの異なる構造的摂動グラフビューを作成し、磁気ラプラシア摂動を通してノード表現を得る。
論文 参考訳(メタデータ) (2023-01-12T17:32:19Z) - MA-GCL: Model Augmentation Tricks for Graph Contrastive Learning [41.963242524220654]
グラフコントラスト学習(GCL)のための3つの簡易実装モデル拡張手法を提案する。
具体的には,GCLに対して,非対称,ランダム,シャッフルという,実装が容易なモデル拡張トリックを3つ提示する。
実験の結果,MA-GCLはノード分類ベンチマークで最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2022-12-14T05:04:10Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
局所グラフコントラスト学習(Local-GCL)という,シンプルだが効果的なコントラストモデルを導入する。
その単純さにもかかわらず、Local-GCLは、様々なスケールと特性を持つグラフ上の自己教師付きノード表現学習タスクにおいて、非常に競争力のある性能を達成する。
論文 参考訳(メタデータ) (2022-12-08T23:36:00Z) - Unifying Graph Contrastive Learning with Flexible Contextual Scopes [57.86762576319638]
フレキシブルコンテキストスコープを用いたグラフコントラスト学習(略してUGCL)という自己教師型学習手法を提案する。
本アルゴリズムは,隣接行列のパワーを制御し,コンテキストスコープによるフレキシブルな文脈表現を構築する。
局所的スコープと文脈的スコープの両方の表現に基づいて、distLはグラフ表現学習のための非常に単純な対照的な損失関数を最適化する。
論文 参考訳(メタデータ) (2022-10-17T07:16:17Z) - ARIEL: Adversarial Graph Contrastive Learning [51.14695794459399]
ARIELは、ノードレベルとグラフレベルの両方の分類タスクにおいて、現在のグラフコントラスト学習法よりも一貫して優れている。
ARIELは敵の攻撃に対してより堅牢である。
論文 参考訳(メタデータ) (2022-08-15T01:24:42Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
グラフコントラスト学習(GCL)は、手作業によるアノテーションの監督なしに、グラフ表現学習(GRL)において有望な性能を示した。
本稿では,この課題に対処するため,グラフココというグラフ補完型コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-24T02:58:36Z) - Adversarial Graph Contrastive Learning with Information Regularization [51.14695794459399]
コントラスト学習はグラフ表現学習において有効な方法である。
グラフ上のデータ拡張は、はるかに直感的ではなく、高品質のコントラスト的なサンプルを提供するのがずっと難しい。
逆グラフ比較学習(Adversarial Graph Contrastive Learning, ARIEL)を提案する。
さまざまな実世界のデータセット上でのノード分類タスクにおいて、現在のグラフのコントラスト学習方法よりも一貫して優れています。
論文 参考訳(メタデータ) (2022-02-14T05:54:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。