論文の概要: Network Anomaly Traffic Detection via Multi-view Feature Fusion
- arxiv url: http://arxiv.org/abs/2409.08020v1
- Date: Thu, 12 Sep 2024 13:04:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 16:29:19.325998
- Title: Network Anomaly Traffic Detection via Multi-view Feature Fusion
- Title(参考訳): マルチビュー特徴融合によるネットワーク異常交通検出
- Authors: Song Hao, Wentao Fu, Xuanze Chen, Chengxiang Jin, Jiajun Zhou, Shanqing Yu, Qi Xuan,
- Abstract要約: ネットワーク異常トラフィック検出のためのマルチビュー・フィーチャー・フュージョン(MuFF)手法を提案する。
MuFFは、時間的および対話的な視点に基づいて、ネットワークトラフィックにおけるパケットの時間的および対話的な関係をモデル化する。
6つの実トラフィックデータセットの実験により、MuFFはネットワーク異常なトラフィック検出において優れた性能を示す。
- 参考スコア(独自算出の注目度): 3.4590834781477864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional anomalous traffic detection methods are based on single-view analysis, which has obvious limitations in dealing with complex attacks and encrypted communications. In this regard, we propose a Multi-view Feature Fusion (MuFF) method for network anomaly traffic detection. MuFF models the temporal and interactive relationships of packets in network traffic based on the temporal and interactive viewpoints respectively. It learns temporal and interactive features. These features are then fused from different perspectives for anomaly traffic detection. Extensive experiments on six real traffic datasets show that MuFF has excellent performance in network anomalous traffic detection, which makes up for the shortcomings of detection under a single perspective.
- Abstract(参考訳): 従来の異常なトラフィック検出手法はシングルビュー解析に基づいており、複雑な攻撃や暗号化通信を扱う際に明らかな制限がある。
そこで本研究では,ネットワーク異常トラフィック検出のためのマルチビュー特徴フュージョン(MuFF)手法を提案する。
MuFFは、時間的および対話的な視点に基づいて、ネットワークトラフィックにおけるパケットの時間的および対話的な関係をモデル化する。
時間的およびインタラクティブな特徴を学習する。
これらの特徴は、異常なトラフィック検出のための異なる視点から融合される。
6つの実トラフィックデータセットに対する大規模な実験により、MuFFはネットワーク異常なトラフィック検出において優れた性能を示し、単一の視点での検出の欠点を補っている。
関連論文リスト
- Detecting Contextual Network Anomalies with Graph Neural Networks [4.671648049111933]
ネットワークトラフィック計測におけるコンテキスト異常検出として,この問題を定式化する。
本稿では,GNNをベースとした独自のソリューションを提案し,起点決定フロー上のトラフィック異常を検出する。
その結果, 本法で検出された異常は, ベースラインが検出した異常と非常に相補的であることがわかった。
論文 参考訳(メタデータ) (2023-12-11T12:45:43Z) - Cross-modal Orthogonal High-rank Augmentation for RGB-Event
Transformer-trackers [58.802352477207094]
本研究では,2つのモード間の分布ギャップを埋めるために,事前学習された視覚変換器(ViT)の潜在可能性を探る。
本研究では,いくつかのトークンの特定のモダリティをランダムにマスキングし,異なるモダリティのトークン間の相互作用を積極的に行うマスクモデリング戦略を提案する。
実験により,我々のプラグアンドプレイトレーニング強化技術は,追跡精度と成功率の両方の観点から,最先端のワンストリームと2つのトラッカーストリームを大幅に向上させることができることが示された。
論文 参考訳(メタデータ) (2023-07-09T08:58:47Z) - An Interactively Reinforced Paradigm for Joint Infrared-Visible Image
Fusion and Saliency Object Detection [59.02821429555375]
この研究は、野生の隠れた物体の発見と位置決めに焦点をあて、無人のシステムに役立てる。
経験的分析により、赤外線と可視画像融合(IVIF)は、難しい物体の発見を可能にする。
マルチモーダル・サリエント・オブジェクト検出(SOD)は、画像内の物体の正確な空間的位置を正確に記述する。
論文 参考訳(メタデータ) (2023-05-17T06:48:35Z) - Multi-view Multi-label Anomaly Network Traffic Classification based on
MLP-Mixer Neural Network [55.21501819988941]
畳み込みニューラルネットワーク(CNN)に基づく既存のネットワークトラフィック分類は、グローバルな情報関連を無視しながら、トラフィックデータの局所的なパターンを強調することが多い。
本稿では,エンドツーエンドのネットワークトラフィック分類手法を提案する。
論文 参考訳(メタデータ) (2022-10-30T01:52:05Z) - Network Traffic Anomaly Detection Method Based on Multi scale Residual
Feature [4.894147848840537]
ネットワークトラフィックのマルチスケール残差特徴に基づく異常検出手法を提案する。
実験の結果,従来の手法と比較して,提案手法の異常なネットワークトラフィックの検出性能が著しく向上していることがわかった。
論文 参考訳(メタデータ) (2022-05-08T16:18:24Z) - AnomMAN: Detect Anomaly on Multi-view Attributed Networks [11.331030689825258]
マルチビュー分散ネットワーク上での異常検出のためのグラフ畳み込みに基づくフレームワークAnomMANを提案する。
実世界のデータセットの実験によると、AnomMANは最先端のモデルよりも優れています。
論文 参考訳(メタデータ) (2022-01-08T12:49:27Z) - Intrusion Detection using Spatial-Temporal features based on Riemannian
Manifold [1.14219428942199]
ネットワークトラフィックデータは、異なるネットワークプロトコルの下で異なるデータバイトパケットの組み合わせである。
これらのトラフィックパケットは、複雑な時間変化の非線形関係を持つ。
既存の最先端の手法は、相関に基づいて特徴を複数のサブセットに融合することで、この課題に発展する。
これはしばしば、高い計算コストと、ネットワークトラフィックのリアルタイム処理に制限となる手動サポートを必要とする。
論文 参考訳(メタデータ) (2021-10-31T23:50:59Z) - Cross-Modality Fusion Transformer for Multispectral Object Detection [0.0]
マルチスペクトル画像ペアは、組み合わせた情報を提供し、オブジェクト検出アプリケーションがより信頼性が高く、堅牢になる。
本論文では,CFT (Cross-Modality Fusion Transformer) という,単純かつ効果的なクロスモーダル機能融合手法を提案する。
論文 参考訳(メタデータ) (2021-10-30T15:34:12Z) - Robust Facial Landmark Detection by Cross-order Cross-semantic Deep
Network [58.843211405385205]
顔のランドマーク検出を堅牢にするためのセマンティックな特徴学習を促進するために,クロスオーダー・クロスセマンティック・ディープ・ネットワーク(CCDN)を提案する。
具体的には、より識別的な表現学習のためのクロスオーダーチャネル相関を導入するために、クロスオーダー2列マルチ励起(CTM)モジュールを提案する。
新しいクロス・オーダー・クロス・セマンティック・レギュレータ (COCS) は、顔のランドマーク検出のために異なるアクティベーションからクロス・オーダーのクロス・セマンティック特徴を学習するためにネットワークを駆動するように設計されている。
論文 参考訳(メタデータ) (2020-11-16T08:19:26Z) - F-FADE: Frequency Factorization for Anomaly Detection in Edge Streams [53.70940420595329]
エッジストリームにおける異常検出のための新しいアプローチであるF-FADEを提案する。
ノード対間の相互作用の周波数の時間進化分布を効率的にモデル化するために、新しい周波数分解技術を用いる。
F-FADEは、一定メモリしか必要とせず、時間的および構造的な変化を伴う幅広い種類の異常をオンラインストリーミング環境で処理できる。
論文 参考訳(メタデータ) (2020-11-09T19:55:40Z) - Cross-layer Feature Pyramid Network for Salient Object Detection [102.20031050972429]
本稿では,有能な物体検出における進行的融合を改善するために,新しいクロス層特徴ピラミッドネットワークを提案する。
レイヤごとの分散機能は、他のすべてのレイヤからセマンティクスと健全な詳細の両方を同時に所有し、重要な情報の損失を減らします。
論文 参考訳(メタデータ) (2020-02-25T14:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。