U3DS$^3$: Unsupervised 3D Semantic Scene Segmentation
- URL: http://arxiv.org/abs/2311.06018v1
- Date: Fri, 10 Nov 2023 12:05:35 GMT
- Title: U3DS$^3$: Unsupervised 3D Semantic Scene Segmentation
- Authors: Jiaxu Liu, Zhengdi Yu, Toby P. Breckon, Hubert P.H. Shum
- Abstract summary: This paper presents U3DS$3$, as a step towards completely unsupervised point cloud segmentation for any holistic 3D scenes.
The initial step of our proposed approach involves generating superpoints based on the geometric characteristics of each scene.
We then undergo a learning process through a spatial clustering-based methodology, followed by iterative training using pseudo-labels generated in accordance with the cluster centroids.
- Score: 19.706172244951116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contemporary point cloud segmentation approaches largely rely on richly
annotated 3D training data. However, it is both time-consuming and challenging
to obtain consistently accurate annotations for such 3D scene data. Moreover,
there is still a lack of investigation into fully unsupervised scene
segmentation for point clouds, especially for holistic 3D scenes. This paper
presents U3DS$^3$, as a step towards completely unsupervised point cloud
segmentation for any holistic 3D scenes. To achieve this, U3DS$^3$ leverages a
generalized unsupervised segmentation method for both object and background
across both indoor and outdoor static 3D point clouds with no requirement for
model pre-training, by leveraging only the inherent information of the point
cloud to achieve full 3D scene segmentation. The initial step of our proposed
approach involves generating superpoints based on the geometric characteristics
of each scene. Subsequently, it undergoes a learning process through a spatial
clustering-based methodology, followed by iterative training using
pseudo-labels generated in accordance with the cluster centroids. Moreover, by
leveraging the invariance and equivariance of the volumetric representations,
we apply the geometric transformation on voxelized features to provide two sets
of descriptors for robust representation learning. Finally, our evaluation
provides state-of-the-art results on the ScanNet and SemanticKITTI, and
competitive results on the S3DIS, benchmark datasets.
Related papers
- Bayesian Self-Training for Semi-Supervised 3D Segmentation [59.544558398992386]
3D segmentation is a core problem in computer vision.
densely labeling 3D point clouds to employ fully-supervised training remains too labor intensive and expensive.
Semi-supervised training provides a more practical alternative, where only a small set of labeled data is given, accompanied by a larger unlabeled set.
arXiv Detail & Related papers (2024-09-12T14:54:31Z) - DatasetNeRF: Efficient 3D-aware Data Factory with Generative Radiance Fields [68.94868475824575]
This paper introduces a novel approach capable of generating infinite, high-quality 3D-consistent 2D annotations alongside 3D point cloud segmentations.
We leverage the strong semantic prior within a 3D generative model to train a semantic decoder.
Once trained, the decoder efficiently generalizes across the latent space, enabling the generation of infinite data.
arXiv Detail & Related papers (2023-11-18T21:58:28Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
We present a novel framework that adapts various foundational models for the 3D point cloud segmentation task.
Our approach involves making initial predictions of 2D semantic masks using different large vision models.
To generate robust 3D semantic pseudo labels, we introduce a semantic label fusion strategy that effectively combines all the results via voting.
arXiv Detail & Related papers (2023-11-03T15:41:15Z) - Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
We propose a clustering based supervised learning scheme for point cloud analysis.
Unlike current de-facto, scene-wise training paradigm, our algorithm conducts within-class clustering on the point embedding space.
Our algorithm shows notable improvements on famous point cloud segmentation datasets.
arXiv Detail & Related papers (2023-07-27T03:42:12Z) - UnScene3D: Unsupervised 3D Instance Segmentation for Indoor Scenes [35.38074724231105]
UnScene3D is a fully unsupervised 3D learning approach for class-agnostic 3D instance segmentation of indoor scans.
We operate on a basis of geometric oversegmentation, enabling efficient representation and learning on high-resolution 3D data.
Our approach improves over state-of-the-art unsupervised 3D instance segmentation methods by more than 300% Average Precision score.
arXiv Detail & Related papers (2023-03-25T19:15:16Z) - ConDor: Self-Supervised Canonicalization of 3D Pose for Partial Shapes [55.689763519293464]
ConDor is a self-supervised method that learns to canonicalize the 3D orientation and position for full and partial 3D point clouds.
During inference, our method takes an unseen full or partial 3D point cloud at an arbitrary pose and outputs an equivariant canonical pose.
arXiv Detail & Related papers (2022-01-19T18:57:21Z) - Exploring Deep 3D Spatial Encodings for Large-Scale 3D Scene
Understanding [19.134536179555102]
We propose an alternative approach to overcome the limitations of CNN based approaches by encoding the spatial features of raw 3D point clouds into undirected graph models.
The proposed method achieves on par state-of-the-art accuracy with improved training time and model stability thus indicating strong potential for further research.
arXiv Detail & Related papers (2020-11-29T12:56:19Z) - Weakly-supervised 3D Shape Completion in the Wild [91.04095516680438]
We address the problem of learning 3D complete shape from unaligned and real-world partial point clouds.
We propose a weakly-supervised method to estimate both 3D canonical shape and 6-DoF pose for alignment, given multiple partial observations.
Experiments on both synthetic and real data show that it is feasible and promising to learn 3D shape completion through large-scale data without shape and pose supervision.
arXiv Detail & Related papers (2020-08-20T17:53:42Z) - Weakly Supervised Semantic Segmentation in 3D Graph-Structured Point
Clouds of Wild Scenes [36.07733308424772]
The deficiency of 3D segmentation labels is one of the main obstacles to effective point cloud segmentation.
We propose a novel deep graph convolutional network-based framework for large-scale semantic scene segmentation in point clouds with sole 2D supervision.
arXiv Detail & Related papers (2020-04-26T23:02:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.