Graph Laplacian-based Bayesian Multi-fidelity Modeling
- URL: http://arxiv.org/abs/2409.08211v1
- Date: Thu, 12 Sep 2024 16:51:55 GMT
- Title: Graph Laplacian-based Bayesian Multi-fidelity Modeling
- Authors: Orazio Pinti, Jeremy M. Budd, Franca Hoffmann, Assad A. Oberai,
- Abstract summary: A graph Laplacian constructed from the low-fidelity data is used to define a multivariate Gaussian prior density.
Few high-fidelity data points are used to construct a conjugate likelihood term.
The results demonstrate that by utilizing a small fraction of high-fidelity data, the multi-fidelity approach can significantly improve the accuracy of a large collection of low-fidelity data points.
- Score: 1.383698759122035
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel probabilistic approach for generating multi-fidelity data while accounting for errors inherent in both low- and high-fidelity data. In this approach a graph Laplacian constructed from the low-fidelity data is used to define a multivariate Gaussian prior density for the coordinates of the true data points. In addition, few high-fidelity data points are used to construct a conjugate likelihood term. Thereafter, Bayes rule is applied to derive an explicit expression for the posterior density which is also multivariate Gaussian. The maximum \textit{a posteriori} (MAP) estimate of this density is selected to be the optimal multi-fidelity estimate. It is shown that the MAP estimate and the covariance of the posterior density can be determined through the solution of linear systems of equations. Thereafter, two methods, one based on spectral truncation and another based on a low-rank approximation, are developed to solve these equations efficiently. The multi-fidelity approach is tested on a variety of problems in solid and fluid mechanics with data that represents vectors of quantities of interest and discretized spatial fields in one and two dimensions. The results demonstrate that by utilizing a small fraction of high-fidelity data, the multi-fidelity approach can significantly improve the accuracy of a large collection of low-fidelity data points.
Related papers
- Gradient-enhanced deep Gaussian processes for multifidelity modelling [0.0]
Multifidelity models integrate data from multiple sources to produce a single approximator for the underlying process.
Deep Gaussian processes (GPs) are attractive for multifidelity modelling as they are non-parametric, robust to overfitting, perform well for small datasets.
arXiv Detail & Related papers (2024-02-25T11:08:19Z) - DynGMA: a robust approach for learning stochastic differential equations from data [13.858051019755283]
We introduce novel approximations to the transition density of the parameterized SDE.
Our method exhibits superior accuracy compared to baseline methods in learning the fully unknown drift diffusion functions.
It is capable of handling data with low time resolution and variable, even uncontrollable, time step sizes.
arXiv Detail & Related papers (2024-02-22T12:09:52Z) - Sobolev Space Regularised Pre Density Models [51.558848491038916]
We propose a new approach to non-parametric density estimation that is based on regularizing a Sobolev norm of the density.
This method is statistically consistent, and makes the inductive validation model clear and consistent.
arXiv Detail & Related papers (2023-07-25T18:47:53Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
We introduce probabilistic unrolling, a method that combines Monte Carlo sampling with iterative linear solvers to circumvent matrix inversions.
Our theoretical analyses reveal that unrolling and backpropagation through the iterations of the solver can accelerate gradient estimation for maximum likelihood estimation.
In experiments on simulated and real data, we demonstrate that probabilistic unrolling learns latent Gaussian models up to an order of magnitude faster than gradient EM, with minimal losses in model performance.
arXiv Detail & Related papers (2023-06-05T21:08:34Z) - AD-DMKDE: Anomaly Detection through Density Matrices and Fourier
Features [0.0]
The method can be seen as an efficient approximation of Kernel Density Estimation (KDE)
A systematic comparison of the proposed method with eleven state-of-the-art anomaly detection methods on various data sets is presented.
arXiv Detail & Related papers (2022-10-26T15:43:16Z) - A Robust and Flexible EM Algorithm for Mixtures of Elliptical
Distributions with Missing Data [71.9573352891936]
This paper tackles the problem of missing data imputation for noisy and non-Gaussian data.
A new EM algorithm is investigated for mixtures of elliptical distributions with the property of handling potential missing data.
Experimental results on synthetic data demonstrate that the proposed algorithm is robust to outliers and can be used with non-Gaussian data.
arXiv Detail & Related papers (2022-01-28T10:01:37Z) - Density Ratio Estimation via Infinitesimal Classification [85.08255198145304]
We propose DRE-infty, a divide-and-conquer approach to reduce Density ratio estimation (DRE) to a series of easier subproblems.
Inspired by Monte Carlo methods, we smoothly interpolate between the two distributions via an infinite continuum of intermediate bridge distributions.
We show that our approach performs well on downstream tasks such as mutual information estimation and energy-based modeling on complex, high-dimensional datasets.
arXiv Detail & Related papers (2021-11-22T06:26:29Z) - Meta-Learning for Relative Density-Ratio Estimation [59.75321498170363]
Existing methods for (relative) density-ratio estimation (DRE) require many instances from both densities.
We propose a meta-learning method for relative DRE, which estimates the relative density-ratio from a few instances by using knowledge in related datasets.
We empirically demonstrate the effectiveness of the proposed method by using three problems: relative DRE, dataset comparison, and outlier detection.
arXiv Detail & Related papers (2021-07-02T02:13:45Z) - Learning Optical Flow from a Few Matches [67.83633948984954]
We show that the dense correlation volume representation is redundant and accurate flow estimation can be achieved with only a fraction of elements in it.
Experiments show that our method can reduce computational cost and memory use significantly, while maintaining high accuracy.
arXiv Detail & Related papers (2021-04-05T21:44:00Z) - A similarity-based Bayesian mixture-of-experts model [0.5156484100374058]
We present a new non-parametric mixture-of-experts model for multivariate regression problems.
Using a conditionally specified model, predictions for out-of-sample inputs are based on similarities to each observed data point.
Posterior inference is performed on the parameters of the mixture as well as the distance metric.
arXiv Detail & Related papers (2020-12-03T18:08:30Z) - Learning Implicit Generative Models with Theoretical Guarantees [12.761710596142109]
We propose a textbfunified textbfframework for textbfimplicit textbfmodeling (UnifiGem)
UnifiGem integrates approaches from optimal transport, numerical ODE, density-ratio (density-difference) estimation and deep neural networks.
Experimental results on both synthetic datasets and real benchmark datasets support our theoretical findings and demonstrate the effectiveness of UnifiGem.
arXiv Detail & Related papers (2020-02-07T15:55:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.