AD-DMKDE: Anomaly Detection through Density Matrices and Fourier
Features
- URL: http://arxiv.org/abs/2210.14796v1
- Date: Wed, 26 Oct 2022 15:43:16 GMT
- Title: AD-DMKDE: Anomaly Detection through Density Matrices and Fourier
Features
- Authors: Oscar Bustos-Brinez, Joseph Gallego-Mejia, Fabio A. Gonz\'alez
- Abstract summary: The method can be seen as an efficient approximation of Kernel Density Estimation (KDE)
A systematic comparison of the proposed method with eleven state-of-the-art anomaly detection methods on various data sets is presented.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel density estimation method for anomaly detection
using density matrices (a powerful mathematical formalism from quantum
mechanics) and Fourier features. The method can be seen as an efficient
approximation of Kernel Density Estimation (KDE). A systematic comparison of
the proposed method with eleven state-of-the-art anomaly detection methods on
various data sets is presented, showing competitive performance on different
benchmark data sets. The method is trained efficiently and it uses optimization
to find the parameters of data embedding. The prediction phase complexity of
the proposed algorithm is constant relative to the training data size, and it
performs well in data sets with different anomaly rates. Its architecture
allows vectorization and can be implemented on GPU/TPU hardware.
Related papers
- Latent Anomaly Detection Through Density Matrices [3.843839245375552]
This paper introduces a novel anomaly detection framework that combines the robust statistical principles of density-estimation-based anomaly detection methods with the representation-learning capabilities of deep learning models.
The method originated from this framework is presented in two different versions: a shallow approach and a deep approach that integrates an autoencoder to learn a low-dimensional representation of the data.
arXiv Detail & Related papers (2024-08-14T15:44:51Z) - Density Estimation via Binless Multidimensional Integration [45.21975243399607]
We introduce the Binless Multidimensional Thermodynamic Integration (BMTI) method for nonparametric, robust, and data-efficient density estimation.
BMTI estimates the logarithm of the density by initially computing log-density differences between neighbouring data points.
The method is tested on a variety of complex synthetic high-dimensional datasets, and is benchmarked on realistic datasets from the chemical physics literature.
arXiv Detail & Related papers (2024-07-10T23:45:20Z) - DynGMA: a robust approach for learning stochastic differential equations from data [13.858051019755283]
We introduce novel approximations to the transition density of the parameterized SDE.
Our method exhibits superior accuracy compared to baseline methods in learning the fully unknown drift diffusion functions.
It is capable of handling data with low time resolution and variable, even uncontrollable, time step sizes.
arXiv Detail & Related papers (2024-02-22T12:09:52Z) - Sobolev Space Regularised Pre Density Models [51.558848491038916]
We propose a new approach to non-parametric density estimation that is based on regularizing a Sobolev norm of the density.
This method is statistically consistent, and makes the inductive validation model clear and consistent.
arXiv Detail & Related papers (2023-07-25T18:47:53Z) - Linearized Wasserstein dimensionality reduction with approximation
guarantees [65.16758672591365]
LOT Wassmap is a computationally feasible algorithm to uncover low-dimensional structures in the Wasserstein space.
We show that LOT Wassmap attains correct embeddings and that the quality improves with increased sample size.
We also show how LOT Wassmap significantly reduces the computational cost when compared to algorithms that depend on pairwise distance computations.
arXiv Detail & Related papers (2023-02-14T22:12:16Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
We derive an approximate message-passing algorithm (AMP) for the inhomogeneous problem.
We identify in particular the existence of a statistical-to-computational gap where known algorithms require a signal-to-noise ratio bigger than the information-theoretic threshold to perform better than random.
arXiv Detail & Related papers (2023-02-13T19:57:17Z) - LEAN-DMKDE: Quantum Latent Density Estimation for Anomaly Detection [0.0]
The method combines an autoencoder, for learning a low-dimensional representation of the data, with a density-estimation model.
The method predicts a degree of normality for new samples based on the estimated density.
The experimental results show that the method performs on par with or outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2022-11-15T21:51:42Z) - Fast Kernel Density Estimation with Density Matrices and Random Fourier
Features [0.0]
kernels density estimation (KDE) is one of the most widely used nonparametric density estimation methods.
DMKDE uses density matrices, a quantum mechanical formalism, and random Fourier features, an explicit kernel approximation, to produce density estimates.
DMKDE is on par with its competitors for computing density estimates and advantages are shown when performed on high-dimensional data.
arXiv Detail & Related papers (2022-08-02T02:11:10Z) - A Robust and Flexible EM Algorithm for Mixtures of Elliptical
Distributions with Missing Data [71.9573352891936]
This paper tackles the problem of missing data imputation for noisy and non-Gaussian data.
A new EM algorithm is investigated for mixtures of elliptical distributions with the property of handling potential missing data.
Experimental results on synthetic data demonstrate that the proposed algorithm is robust to outliers and can be used with non-Gaussian data.
arXiv Detail & Related papers (2022-01-28T10:01:37Z) - Density-Based Clustering with Kernel Diffusion [59.4179549482505]
A naive density corresponding to the indicator function of a unit $d$-dimensional Euclidean ball is commonly used in density-based clustering algorithms.
We propose a new kernel diffusion density function, which is adaptive to data of varying local distributional characteristics and smoothness.
arXiv Detail & Related papers (2021-10-11T09:00:33Z) - Meta-Learning for Relative Density-Ratio Estimation [59.75321498170363]
Existing methods for (relative) density-ratio estimation (DRE) require many instances from both densities.
We propose a meta-learning method for relative DRE, which estimates the relative density-ratio from a few instances by using knowledge in related datasets.
We empirically demonstrate the effectiveness of the proposed method by using three problems: relative DRE, dataset comparison, and outlier detection.
arXiv Detail & Related papers (2021-07-02T02:13:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.