論文の概要: Adaptive Language-Guided Abstraction from Contrastive Explanations
- arxiv url: http://arxiv.org/abs/2409.08212v2
- Date: Fri, 13 Sep 2024 21:24:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 12:21:17.117988
- Title: Adaptive Language-Guided Abstraction from Contrastive Explanations
- Title(参考訳): コントラスト的説明からの適応型言語ガイドによる抽象化
- Authors: Andi Peng, Belinda Z. Li, Ilia Sucholutsky, Nishanth Kumar, Julie A. Shah, Jacob Andreas, Andreea Bobu,
- Abstract要約: 報酬を計算するためにこれらの特徴をどのように使うべきかを決定する前に、環境のどの特徴が関係しているかを決定する必要がある。
連立特徴と報奨学習のためのエンドツーエンドの手法は、しばしば、刺激的な状態特徴に敏感な脆い報酬関数をもたらす。
本稿では,言語モデルを用いて人間に意味のある特徴を反復的に識別するALGAEという手法について述べる。
- 参考スコア(独自算出の注目度): 53.48583372522492
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many approaches to robot learning begin by inferring a reward function from a set of human demonstrations. To learn a good reward, it is necessary to determine which features of the environment are relevant before determining how these features should be used to compute reward. End-to-end methods for joint feature and reward learning (e.g., using deep networks or program synthesis techniques) often yield brittle reward functions that are sensitive to spurious state features. By contrast, humans can often generalizably learn from a small number of demonstrations by incorporating strong priors about what features of a demonstration are likely meaningful for a task of interest. How do we build robots that leverage this kind of background knowledge when learning from new demonstrations? This paper describes a method named ALGAE (Adaptive Language-Guided Abstraction from [Contrastive] Explanations) which alternates between using language models to iteratively identify human-meaningful features needed to explain demonstrated behavior, then standard inverse reinforcement learning techniques to assign weights to these features. Experiments across a variety of both simulated and real-world robot environments show that ALGAE learns generalizable reward functions defined on interpretable features using only small numbers of demonstrations. Importantly, ALGAE can recognize when features are missing, then extract and define those features without any human input -- making it possible to quickly and efficiently acquire rich representations of user behavior.
- Abstract(参考訳): ロボット学習への多くのアプローチは、人間のデモから報酬関数を推定することから始まる。
良い報奨を得るためには、これらの特徴がどのようにして報酬を計算するべきかを決定する前に、環境のどの特徴が関係しているかを決定する必要がある。
結合特徴と報酬学習のためのエンドツーエンドの手法(例えば、ディープネットワークやプログラム合成技術)は、しばしば、刺激的な状態特徴に敏感な脆い報酬関数を生成する。
対照的に、人間は少数のデモンストレーションから、デモのどの特徴が関心のあるタスクに意味があるかについての強い事前を組み込むことで、一般的に学習することができる。
新しいデモから学ぶとき、このような背景知識を活用するロボットをどうやって作るのか?
本稿では,ALGAE(Adaptive Language-Guided Abstraction from [Contrastive] Explanations)と呼ばれる手法について述べる。
シミュレーションと実世界の両方のロボット環境における実験により、ALGAEは少数の実演だけで解釈可能な特徴に定義された一般化可能な報酬関数を学習することを示した。
重要なことは、ALGAEは機能がいつ欠落しているかを認識し、その機能を人間の入力なしで抽出して定義することができるため、ユーザの振る舞いのリッチな表現を迅速かつ効率的に取得することができる。
関連論文リスト
- Sparse Feature Circuits: Discovering and Editing Interpretable Causal Graphs in Language Models [55.19497659895122]
本稿ではスパース特徴回路の発見と適用方法を紹介する。
これらは言語モデルの振る舞いを説明するための人間の解釈可能な特徴の因果関係の著作である。
論文 参考訳(メタデータ) (2024-03-28T17:56:07Z) - A Generalized Acquisition Function for Preference-based Reward Learning [12.158619866176487]
優先度に基づく報酬学習は、ロボットや自律システムに対して、人間がタスクを実行したいと望む方法を教えるための一般的なテクニックである。
従来の研究では、報酬関数パラメータに関する情報獲得を最大化するために、嗜好クエリを積極的に合成することで、データ効率が向上することが示されている。
本研究では, 報酬関数を行動同値クラスまで学習するためには, 行動上の同一ランク付け, 選択上の分布, その他の関連する2つの報酬の類似性の定義などの最適化が可能であることを示す。
論文 参考訳(メタデータ) (2024-03-09T20:32:17Z) - FIND: A Function Description Benchmark for Evaluating Interpretability
Methods [86.80718559904854]
本稿では,自動解釈可能性評価のためのベンチマークスイートであるFIND(Function Interpretation and Description)を紹介する。
FINDには、トレーニングされたニューラルネットワークのコンポーネントに似た機能と、私たちが生成しようとしている種類の記述が含まれています。
本研究では、事前訓練された言語モデルを用いて、自然言語とコードにおける関数の振る舞いの記述を生成する手法を評価する。
論文 参考訳(メタデータ) (2023-09-07T17:47:26Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
我々は、ロボット操作ポリシーのタスク非依存報酬関数を学習するために、幅広い操作タスクを解く人間のラベル付きビデオを使用する。
学習された報酬は、タイムコントラストの目的を用いて学習した埋め込み空間におけるゴールまでの距離に基づいている。
論文 参考訳(メタデータ) (2022-11-16T16:26:48Z) - Inducing Structure in Reward Learning by Learning Features [31.413656752926208]
本稿では,その特徴を学習するための新しいタイプの人間入力と,それを生の状態空間から複雑な特徴を学習するアルゴリズムを紹介する。
当社の手法は,すべての機能をスクラッチから学ばなければならないような設定や,いくつかの機能が知られている場所で実証しています。
論文 参考訳(メタデータ) (2022-01-18T16:02:29Z) - Generative Adversarial Reward Learning for Generalized Behavior Tendency
Inference [71.11416263370823]
ユーザの行動嗜好モデルのための生成的逆強化学習を提案する。
我々のモデルは,差別的アクター批判ネットワークとWasserstein GANに基づいて,ユーザの行動から報酬を自動的に学習することができる。
論文 参考訳(メタデータ) (2021-05-03T13:14:25Z) - Visual Imitation Made Easy [102.36509665008732]
本稿では,ロボットへのデータ転送を容易にしながら,データ収集プロセスを単純化する,模倣のための代替インターフェースを提案する。
我々は、データ収集装置やロボットのエンドエフェクターとして、市販のリーチ・グラブラー補助具を使用する。
我々は,非包括的プッシュと包括的積み重ねという2つの課題について実験的に評価した。
論文 参考訳(メタデータ) (2020-08-11T17:58:50Z) - Feature Expansive Reward Learning: Rethinking Human Input [31.413656752926208]
そこで我々は,ロボットが教えている特徴が表現されていない状態からロボットを誘導する新しいタイプの人間入力を紹介した。
本稿では,その特徴を生の状態空間から学習し,報酬関数に組み込むアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-23T17:59:34Z) - Active Preference-Based Gaussian Process Regression for Reward Learning [42.697198807877925]
一般的なアプローチの1つは、収集された専門家によるデモンストレーションから報酬関数を学ぶことである。
選好に基づく学習手法を提案し、その代替として、人間のフィードバックは軌跡間の比較の形でのみ存在する。
当社のアプローチは、嗜好に基づく学習フレームワークにおいて、柔軟性とデータ非効率の両問題に対処することを可能にする。
論文 参考訳(メタデータ) (2020-05-06T03:29:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。