LoRID: Low-Rank Iterative Diffusion for Adversarial Purification
- URL: http://arxiv.org/abs/2409.08255v1
- Date: Thu, 12 Sep 2024 17:51:25 GMT
- Title: LoRID: Low-Rank Iterative Diffusion for Adversarial Purification
- Authors: Geigh Zollicoffer, Minh Vu, Ben Nebgen, Juan Castorena, Boian Alexandrov, Manish Bhattarai,
- Abstract summary: This work presents an information-theoretic examination of diffusion-based purification methods.
We introduce LoRID, a novel Low-Rank Iterative Diffusion purification method designed to remove adversarial perturbation with low intrinsic purification errors.
LoRID achieves superior robustness performance in CIFAR-10/100, CelebA-HQ, and ImageNet datasets under both white-box and black-box settings.
- Score: 3.735798190358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents an information-theoretic examination of diffusion-based purification methods, the state-of-the-art adversarial defenses that utilize diffusion models to remove malicious perturbations in adversarial examples. By theoretically characterizing the inherent purification errors associated with the Markov-based diffusion purifications, we introduce LoRID, a novel Low-Rank Iterative Diffusion purification method designed to remove adversarial perturbation with low intrinsic purification errors. LoRID centers around a multi-stage purification process that leverages multiple rounds of diffusion-denoising loops at the early time-steps of the diffusion models, and the integration of Tucker decomposition, an extension of matrix factorization, to remove adversarial noise at high-noise regimes. Consequently, LoRID increases the effective diffusion time-steps and overcomes strong adversarial attacks, achieving superior robustness performance in CIFAR-10/100, CelebA-HQ, and ImageNet datasets under both white-box and black-box settings.
Related papers
- Instant Adversarial Purification with Adversarial Consistency Distillation [1.224954637705144]
We propose One Step Control Purification (OSCP), a diffusion-based purification model that can purify the adversarial image in one Neural Evaluation (NFE) in diffusion models.
We achieve defense success rate of 74.19% on ImageNet, only requiring 0.1s for each purification.
arXiv Detail & Related papers (2024-08-30T07:49:35Z) - Classifier Guidance Enhances Diffusion-based Adversarial Purification by Preserving Predictive Information [75.36597470578724]
Adversarial purification is one of the promising approaches to defend neural networks against adversarial attacks.
We propose gUided Purification (COUP) algorithm, which purifies while keeping away from the classifier decision boundary.
Experimental results show that COUP can achieve better adversarial robustness under strong attack methods.
arXiv Detail & Related papers (2024-08-12T02:48:00Z) - Distilling Diffusion Models into Conditional GANs [90.76040478677609]
We distill a complex multistep diffusion model into a single-step conditional GAN student model.
For efficient regression loss, we propose E-LatentLPIPS, a perceptual loss operating directly in diffusion model's latent space.
We demonstrate that our one-step generator outperforms cutting-edge one-step diffusion distillation models.
arXiv Detail & Related papers (2024-05-09T17:59:40Z) - Purify++: Improving Diffusion-Purification with Advanced Diffusion
Models and Control of Randomness [22.87882885963586]
Defense against adversarial attacks is important for AI safety.
Adversarial purification is a family of approaches that defend adversarial attacks with suitable pre-processing.
We propose Purify++, a new diffusion purification algorithm that is now the state-of-the-art purification method against several adversarial attacks.
arXiv Detail & Related papers (2023-10-28T17:18:38Z) - DiffAttack: Evasion Attacks Against Diffusion-Based Adversarial
Purification [63.65630243675792]
Diffusion-based purification defenses leverage diffusion models to remove crafted perturbations of adversarial examples.
Recent studies show that even advanced attacks cannot break such defenses effectively.
We propose a unified framework DiffAttack to perform effective and efficient attacks against diffusion-based purification defenses.
arXiv Detail & Related papers (2023-10-27T15:17:50Z) - Global Structure-Aware Diffusion Process for Low-Light Image Enhancement [64.69154776202694]
This paper studies a diffusion-based framework to address the low-light image enhancement problem.
We advocate for the regularization of its inherent ODE-trajectory.
Experimental evaluations reveal that the proposed framework attains distinguished performance in low-light enhancement.
arXiv Detail & Related papers (2023-10-26T17:01:52Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - Guided Diffusion Model for Adversarial Purification [103.4596751105955]
Adversarial attacks disturb deep neural networks (DNNs) in various algorithms and frameworks.
We propose a novel purification approach, referred to as guided diffusion model for purification (GDMP)
On our comprehensive experiments across various datasets, the proposed GDMP is shown to reduce the perturbations raised by adversarial attacks to a shallow range.
arXiv Detail & Related papers (2022-05-30T10:11:15Z) - Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models
for Inverse Problems through Stochastic Contraction [31.61199061999173]
Diffusion models have a critical downside - they are inherently slow to sample from, needing few thousand steps of iteration to generate images from pure Gaussian noise.
We show that starting from Gaussian noise is unnecessary. Instead, starting from a single forward diffusion with better initialization significantly reduces the number of sampling steps in the reverse conditional diffusion.
New sampling strategy, dubbed ComeCloser-DiffuseFaster (CCDF), also reveals a new insight on how the existing feedforward neural network approaches for inverse problems can be synergistically combined with the diffusion models.
arXiv Detail & Related papers (2021-12-09T04:28:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.