COMEX Copper Futures Volatility Forecasting: Econometric Models and Deep Learning
- URL: http://arxiv.org/abs/2409.08356v1
- Date: Thu, 12 Sep 2024 18:44:31 GMT
- Title: COMEX Copper Futures Volatility Forecasting: Econometric Models and Deep Learning
- Authors: Zian Wang, Xinyi Lu,
- Abstract summary: This paper investigates the forecasting performance of COMEX copper futures realized volatility using both econometric volatility models and deep learning recurrent neural network models.
In forecasting daily realized volatility for COMEX copper futures with a rolling window approach, the econometric models, particularly HAR, outperform recurrent neural networks overall.
Despite the black-box nature of machine learning models, the deep learning models demonstrate superior forecasting performance, surpassing the fixed QLIKE value of HAR in the experiment.
- Score: 5.459325230078567
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates the forecasting performance of COMEX copper futures realized volatility across various high-frequency intervals using both econometric volatility models and deep learning recurrent neural network models. The econometric models considered are GARCH and HAR, while the deep learning models include RNN (Recurrent Neural Network), LSTM (Long Short-Term Memory), and GRU (Gated Recurrent Unit). In forecasting daily realized volatility for COMEX copper futures with a rolling window approach, the econometric models, particularly HAR, outperform recurrent neural networks overall, with HAR achieving the lowest QLIKE loss function value. However, when the data is replaced with hourly high-frequency realized volatility, the deep learning models outperform the GARCH model, and HAR attains a comparable QLIKE loss function value. Despite the black-box nature of machine learning models, the deep learning models demonstrate superior forecasting performance, surpassing the fixed QLIKE value of HAR in the experiment. Moreover, as the forecast horizon extends for daily realized volatility, deep learning models gradually close the performance gap with the GARCH model in certain loss function metrics. Nonetheless, HAR remains the most effective model overall for daily realized volatility forecasting in copper futures.
Related papers
- A Dynamic Approach to Stock Price Prediction: Comparing RNN and Mixture of Experts Models Across Different Volatility Profiles [0.0]
The MoE framework combines an RNN for volatile stocks and a linear model for stable stocks, dynamically adjusting the weight of each model through a gating network.
Results indicate that the MoE approach significantly improves predictive accuracy across different volatility profiles.
The MoE model's adaptability allows it to outperform each individual model, reducing errors such as Mean Squared Error (MSE) and Mean Absolute Error (MAE)
arXiv Detail & Related papers (2024-10-04T14:36:21Z) - GARCH-Informed Neural Networks for Volatility Prediction in Financial Markets [0.0]
We present a new, hybrid Deep Learning model that captures and forecasting market volatility more accurately than either class of models are capable of on their own.
When compared to other time series models, GINN showed superior out-of-sample prediction performance in terms of the Coefficient of Determination ($R2$), Mean Squared Error (MSE), and Mean Absolute Error (MAE)
arXiv Detail & Related papers (2024-09-30T23:53:54Z) - Loss-based Bayesian Sequential Prediction of Value at Risk with a Long-Memory and Non-linear Realized Volatility Model [3.00982257854028]
Long memory and non-linear realized volatility model class is proposed for Value at Risk (VaR) forecasting.
This model, referred to as RNN-HAR, extends the heterogeneous autoregressive (HAR) model.
Loss-based generalized Bayesian inference with Sequential Monte Carlo is employed for model estimation and sequential prediction.
arXiv Detail & Related papers (2024-08-24T14:17:31Z) - An Evaluation of Deep Learning Models for Stock Market Trend Prediction [0.3277163122167433]
This study investigates the efficacy of advanced deep learning models for short-term trend forecasting using daily and hourly closing prices from the S&P 500 index and the Brazilian ETF EWZ.
We introduce the Extended Long Short-Term Memory for Time Series (xLSTM-TS) model, an xLSTM adaptation optimised for time series prediction.
Among the models tested, xLSTM-TS consistently outperformed others. For example, it achieved a test accuracy of 72.82% and an F1 score of 73.16% on the EWZ daily dataset.
arXiv Detail & Related papers (2024-08-22T13:58:55Z) - Towards Long-Term predictions of Turbulence using Neural Operators [68.8204255655161]
It aims to develop reduced-order/surrogate models for turbulent flow simulations using Machine Learning.
Different model structures are analyzed, with U-NET structures performing better than the standard FNO in accuracy and stability.
arXiv Detail & Related papers (2023-07-25T14:09:53Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Forex Trading Volatility Prediction using Neural Network Models [6.09960572440709]
We show how to construct the deep-learning network by the guidance of the empirical patterns of the intra-day volatility.
The numerical results show that the multiscale Long Short-Term Memory (LSTM) model with the input of multi-currency pairs consistently achieves the state-of-the-art accuracy.
arXiv Detail & Related papers (2021-12-02T12:33:12Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Learning representations with end-to-end models for improved remaining
useful life prognostics [64.80885001058572]
The remaining Useful Life (RUL) of equipment is defined as the duration between the current time and its failure.
We propose an end-to-end deep learning model based on multi-layer perceptron and long short-term memory layers (LSTM) to predict the RUL.
We will discuss how the proposed end-to-end model is able to achieve such good results and compare it to other deep learning and state-of-the-art methods.
arXiv Detail & Related papers (2021-04-11T16:45:18Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
We introduce the $gamma$-model, a predictive model of environment dynamics with an infinite probabilistic horizon.
We discuss how its training reflects an inescapable tradeoff between training-time and testing-time compounding errors.
arXiv Detail & Related papers (2020-10-27T17:54:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.