Stochastic Reinforcement Learning with Stability Guarantees for Control of Unknown Nonlinear Systems
- URL: http://arxiv.org/abs/2409.08382v1
- Date: Thu, 12 Sep 2024 20:07:54 GMT
- Title: Stochastic Reinforcement Learning with Stability Guarantees for Control of Unknown Nonlinear Systems
- Authors: Thanin Quartz, Ruikun Zhou, Hans De Sterck, Jun Liu,
- Abstract summary: We propose a reinforcement learning algorithm that stabilizes the system by learning a local linear representation ofthe dynamics.
We demonstrate the effectiveness of our algorithm on several challenging high-dimensional dynamical systems.
- Score: 6.571209126567701
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Designing a stabilizing controller for nonlinear systems is a challenging task, especially for high-dimensional problems with unknown dynamics. Traditional reinforcement learning algorithms applied to stabilization tasks tend to drive the system close to the equilibrium point. However, these approaches often fall short of achieving true stabilization and result in persistent oscillations around the equilibrium point. In this work, we propose a reinforcement learning algorithm that stabilizes the system by learning a local linear representation ofthe dynamics. The main component of the algorithm is integrating the learned gain matrix directly into the neural policy. We demonstrate the effectiveness of our algorithm on several challenging high-dimensional dynamical systems. In these simulations, our algorithm outperforms popular reinforcement learning algorithms, such as soft actor-critic (SAC) and proximal policy optimization (PPO), and successfully stabilizes the system. To support the numerical results, we provide a theoretical analysis of the feasibility of the learned algorithm for both deterministic and stochastic reinforcement learning settings, along with a convergence analysis of the proposed learning algorithm. Furthermore, we verify that the learned control policies indeed provide asymptotic stability for the nonlinear systems.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Learning to Boost the Performance of Stable Nonlinear Systems [0.0]
We tackle the performance-boosting problem with closed-loop stability guarantees.
Our methods enable learning over arbitrarily deep neural network classes of performance-boosting controllers for stable nonlinear systems.
arXiv Detail & Related papers (2024-05-01T21:11:29Z) - Stability and Generalization of Stochastic Compositional Gradient
Descent Algorithms [61.59448949684493]
We provide the stability and generalization analysis of compositional descent algorithms built from training examples.
We establish the uniform stability results for two popular compositional gradient descent algorithms, namely SCGD and SCSC.
We derive-independent excess risk bounds for SCGD and SCSC by trade-offing their stability results and optimization errors.
arXiv Detail & Related papers (2023-07-07T02:40:09Z) - KCRL: Krasovskii-Constrained Reinforcement Learning with Guaranteed
Stability in Nonlinear Dynamical Systems [66.9461097311667]
We propose a model-based reinforcement learning framework with formal stability guarantees.
The proposed method learns the system dynamics up to a confidence interval using feature representation.
We show that KCRL is guaranteed to learn a stabilizing policy in a finite number of interactions with the underlying unknown system.
arXiv Detail & Related papers (2022-06-03T17:27:04Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Stability Verification in Stochastic Control Systems via Neural Network
Supermartingales [17.558766911646263]
We present an approach for general nonlinear control problems with two novel aspects.
We use ranking supergales (RSMs) to certify a.s.asymptotic stability, and we present a method for learning neural networks.
arXiv Detail & Related papers (2021-12-17T13:05:14Z) - Stabilizing Dynamical Systems via Policy Gradient Methods [32.88312419270879]
We provide a model-free algorithm for stabilizing fully observed dynamical systems.
We prove that this method efficiently recovers a stabilizing controller for linear systems.
We empirically evaluate the effectiveness of our approach on common control benchmarks.
arXiv Detail & Related papers (2021-10-13T00:58:57Z) - Imitation Learning of Stabilizing Policies for Nonlinear Systems [1.52292571922932]
It is shown that the methods developed for linear systems and controllers can be readily extended to controllers using sum of squares.
A projected gradient descent algorithm and an alternating direction method of algorithm are proposed ass for the stabilizing imitation learning problem.
arXiv Detail & Related papers (2021-09-22T17:27:19Z) - Reinforcement Learning Policies in Continuous-Time Linear Systems [0.0]
We present online policies that learn optimal actions fast by carefully randomizing the parameter estimates.
We prove sharp stability results for inexact system dynamics and tightly specify the infinitesimal regret caused by sub-optimal actions.
Our analysis sheds light on fundamental challenges in continuous-time reinforcement learning and suggests a useful cornerstone for similar problems.
arXiv Detail & Related papers (2021-09-16T00:08:50Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Reinforcement Learning with Fast Stabilization in Linear Dynamical
Systems [91.43582419264763]
We study model-based reinforcement learning (RL) in unknown stabilizable linear dynamical systems.
We propose an algorithm that certifies fast stabilization of the underlying system by effectively exploring the environment.
We show that the proposed algorithm attains $tildemathcalO(sqrtT)$ regret after $T$ time steps of agent-environment interaction.
arXiv Detail & Related papers (2020-07-23T23:06:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.