論文の概要: Self-Supervised Inference of Agents in Trustless Environments
- arxiv url: http://arxiv.org/abs/2409.08386v1
- Date: Thu, 12 Sep 2024 20:32:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 18:27:26.918050
- Title: Self-Supervised Inference of Agents in Trustless Environments
- Title(参考訳): 信頼できない環境におけるエージェントの自己監督的推論
- Authors: Vladyslav Larin, Ivan Nikitin, Alexander Firsov,
- Abstract要約: 本稿では,エージェントがSwarmを形成し,高品質な応答を効果的に生成する手法を提案する。
これはデータ推論とランク付けが可能なエージェントを活用することで実現される。
我々のアプローチは、125ミリ秒未満の検証レイテンシに達する他の信頼できない推論戦略よりも、桁違いに高速であることを示す。
- 参考スコア(独自算出の注目度): 44.99833362998488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a novel approach where agents can form swarms to produce high-quality responses effectively. This is accomplished by utilizing agents capable of data inference and ranking, which can be effectively implemented using LLMs as response classifiers. We assess existing approaches for trustless agent inference, define our methodology, estimate practical parameters, and model various types of malicious agent attacks. Our method leverages the collective intelligence of swarms, ensuring robust and efficient decentralized AI inference with better accuracy, security, and reliability. We show that our approach is an order of magnitude faster than other trustless inference strategies reaching less than 125 ms validation latency.
- Abstract(参考訳): 本稿では,エージェントがSwarmを形成し,高品質な応答を効果的に生成する手法を提案する。
これはデータ推論とランク付けが可能なエージェントを活用することで実現され、LSMを応答分類器として効果的に実装することができる。
我々は、信頼できないエージェント推論のための既存のアプローチを評価し、方法論を定義し、実用的なパラメータを推定し、様々な種類の悪意のあるエージェント攻撃をモデル化する。
我々の手法は、Swarmの集合的知性を活用し、より正確な精度、セキュリティ、信頼性で堅牢で効率的な分散AI推論を保証する。
我々のアプローチは、125ミリ秒未満の検証レイテンシに達する他の信頼できない推論戦略よりも、桁違いに高速であることを示す。
関連論文リスト
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - Deep Multi-Agent Reinforcement Learning for Decentralized Active
Hypothesis Testing [11.639503711252663]
我々は,深層多エージェント強化学習の枠組みに根ざした新しいアルゴリズムを導入することで,マルチエージェント能動仮説テスト(AHT)問題に取り組む。
エージェントが協調戦略を学習し、性能を向上させる能力を効果的に示す実験結果を包括的に提示する。
論文 参考訳(メタデータ) (2023-09-14T01:18:04Z) - Achieving Fairness in Multi-Agent Markov Decision Processes Using
Reinforcement Learning [30.605881670761853]
有限水平エピソードMDPにおける公平性を実現するための強化学習手法を提案する。
このようなアプローチは、エピソード数の観点から、サブ線形後悔を実現することを示す。
論文 参考訳(メタデータ) (2023-06-01T03:43:53Z) - Byzantine-Robust Online and Offline Distributed Reinforcement Learning [60.970950468309056]
本稿では,複数のエージェントが環境を探索し,その経験を中央サーバを通じて伝達する分散強化学習環境について考察する。
エージェントの$alpha$-fractionは敵対的であり、任意の偽情報を報告することができる。
我々は、これらの対立エージェントの存在下で、マルコフ決定プロセスの根底にある準最適政策を特定することを模索する。
論文 参考訳(メタデータ) (2022-06-01T00:44:53Z) - Explaining Reinforcement Learning Policies through Counterfactual
Trajectories [147.7246109100945]
人間の開発者は、RLエージェントがテスト時にうまく機能することを検証しなければならない。
本手法では, エージェントの挙動をより広い軌道分布で示すことにより, エージェントの挙動を分布変化下で表現する。
本研究では,2つのエージェント検証タスクのうちの1つに対して,ベースライン法よりも優れたスコアを得られることを示す。
論文 参考訳(メタデータ) (2022-01-29T00:52:37Z) - Improving Model Robustness with Latent Distribution Locally and Globally [28.99007833855102]
本研究では,大域的多様体の観点からの敵攻撃に対するディープニューラルネットワークのモデルロバスト性について考察する。
本稿では,ロバストな最適化による新しい対角訓練法と,潜在マニフォールド適応例(LMAE)を生成するための抽出可能な方法を提案する。
The proposed adversarial training with latent Distribution (ATLD) method defends against adversarial attack by crafting LMAEs with the latent manifold in unsupervised manner。
論文 参考訳(メタデータ) (2021-07-08T07:52:53Z) - Deep Interactive Bayesian Reinforcement Learning via Meta-Learning [63.96201773395921]
他のエージェントの戦略に対する不確実性下での最適適応行動は、インタラクティブベイズ強化学習フレームワークを用いて計算することができる。
本稿では,メタラーン近似的信念推論とベイズ最適行動を提案する。
提案手法は, モデルフリーアプローチ, 近似後部からのサンプル採取, 他者のメモリフリーモデル維持, あるいは環境の既知の構造を完全に活用しない既存手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-01-11T13:25:13Z) - Gaussian Process Based Message Filtering for Robust Multi-Agent
Cooperation in the Presence of Adversarial Communication [5.161531917413708]
マルチエージェントシステムにおける敵通信に対する堅牢性の提供という課題について考察する。
グラフニューラルネットワーク(GNN)に基づく通信アーキテクチャを提案する。
本手法は,非協力的エージェントがもたらす影響を低減できることを示す。
論文 参考訳(メタデータ) (2020-12-01T14:21:58Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。