論文の概要: Continual Learning in 3D Point Clouds: Employing Spectral Techniques for Exemplar Selection
- arxiv url: http://arxiv.org/abs/2409.08388v1
- Date: Thu, 12 Sep 2024 20:34:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 18:27:26.911481
- Title: Continual Learning in 3D Point Clouds: Employing Spectral Techniques for Exemplar Selection
- Title(参考訳): 3次元点雲における連続的学習 : スペクトル技術を用いた模擬選択
- Authors: Hossein Resani, Behrooz Nasihatkon, Mohammadreza Alimoradi Jazi,
- Abstract要約: 3次元オブジェクト分類(CL3D)における連続学習のための新しいフレームワークを提案する。
提案手法は,スペクトルクラスタリングを用いた各クラスからのプロトタイプの選択に基づく。
我々は,ModelNet40,ShapeNet,ScanNetのデータセット上で実験を行い,入力空間の特徴を用いることで,最先端の精度を実現する。
- 参考スコア(独自算出の注目度): 0.40964539027092906
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel framework for Continual Learning in 3D object classification (CL3D). Our approach is based on the selection of prototypes from each class using spectral clustering. For non-Euclidean data such as point clouds, spectral clustering can be employed as long as one can define a distance measure between pairs of samples. Choosing the appropriate distance measure enables us to leverage 3D geometric characteristics to identify representative prototypes for each class. We explore the effectiveness of clustering in the input space (3D points), local feature space (1024-dimensional points), and global feature space. We conduct experiments on the ModelNet40, ShapeNet, and ScanNet datasets, achieving state-of-the-art accuracy exclusively through the use of input space features. By leveraging the combined input, local, and global features, we have improved the state-of-the-art on ModelNet and ShapeNet, utilizing nearly half the memory used by competing approaches. For the challenging ScanNet dataset, our method enhances accuracy by 4.1% while consuming just 28% of the memory used by our competitors, demonstrating the scalability of our approach.
- Abstract(参考訳): 本稿では,3次元オブジェクト分類(CL3D)における連続学習のための新しいフレームワークを提案する。
提案手法は,スペクトルクラスタリングを用いた各クラスからのプロトタイプの選択に基づく。
点雲のようなユークリッドでないデータに対して、スペクトルクラスタリングは、サンプルのペア間の距離測定を定義することができる限り用いられる。
適切な距離尺度を選択することで、3次元幾何学的特徴を活用して各クラスの代表プロトタイプを識別する。
入力空間(3Dポイント)、局所特徴空間(1024次元ポイント)、大域特徴空間におけるクラスタリングの有効性について検討する。
我々は,ModelNet40,ShapeNet,ScanNetのデータセット上で実験を行い,入力空間の特徴を用いることで,最先端の精度を実現する。
インプット,ローカル,グローバルの両機能を組み合わせることで,ModelNetとShapeNetの最先端性を向上し,競合するアプローチで使用されるメモリのほぼ半分を活用しました。
難易度の高いScanNetデータセットでは,コンペティタが使用したメモリの28%しか消費せず,精度を4.1%向上させ,アプローチのスケーラビリティを実証する。
関連論文リスト
- Dual-Perspective Knowledge Enrichment for Semi-Supervised 3D Object
Detection [55.210991151015534]
本稿では, DPKE という新しい2次元知識豊か化手法を提案する。
我々のDPKEは、データパースペクティブと機能パースペクティブという2つの観点から、限られたトレーニングデータ、特にラベルなしデータの知識を豊かにしています。
論文 参考訳(メタデータ) (2024-01-10T08:56:07Z) - Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
本稿では,ポイントクラウド分析のためのクラスタリングに基づく教師付き学習手法を提案する。
現在のデファクトでシーンワイドなトレーニングパラダイムとは異なり、我々のアルゴリズムは点埋め込み空間上でクラス内のクラスタリングを行う。
我々のアルゴリズムは、有名なポイントクラウドセグメンテーションデータセットの顕著な改善を示している。
論文 参考訳(メタデータ) (2023-07-27T03:42:12Z) - Low-Resource White-Box Semantic Segmentation of Supporting Towers on 3D
Point Clouds via Signature Shape Identification [52.77024349608834]
SCENE-Netは3Dポイントクラウドセマンティックセグメンテーションのための低リソースのホワイトボックスモデルである。
ラップトップでのトレーニング時間は85分、推論時間は20ミリ秒です。
40000 Kmというラベル付きラベル付きデータセットを、農村の地形点雲とコード実装のデータセットとしてリリースしています。
論文 参考訳(メタデータ) (2023-06-13T14:36:06Z) - Dynamic Clustering Transformer Network for Point Cloud Segmentation [23.149220817575195]
動的クラスタリングトランスネットワーク(DCTNet)と呼ばれる新しい3Dポイントクラウド表現ネットワークを提案する。
エンコーダ-デコーダアーキテクチャがあり、ローカルとグローバルの両方の機能学習が可能である。
提案手法は,オブジェクトベースデータセット(ShapeNet),都市ナビゲーションデータセット(Toronto-3D),マルチスペクトルLiDARデータセットを用いて評価した。
論文 参考訳(メタデータ) (2023-05-30T01:11:05Z) - PointInst3D: Segmenting 3D Instances by Points [136.7261709896713]
本稿では,ポイント単位の予測方式で機能する,完全畳み込み型3Dポイントクラウドインスタンスセグメンテーション手法を提案する。
その成功の鍵は、各サンプルポイントに適切なターゲットを割り当てることにある。
提案手法はScanNetとS3DISのベンチマークで有望な結果が得られる。
論文 参考訳(メタデータ) (2022-04-25T02:41:46Z) - Learn to Learn Metric Space for Few-Shot Segmentation of 3D Shapes [17.217954254022573]
メタラーニングに基づく3次元形状分割手法を提案する。
本稿では,ShapeNet部データセットにおける提案手法の優れた性能を,既存のベースラインや最先端の半教師手法と比較し,いくつかのシナリオで示す。
論文 参考訳(メタデータ) (2021-07-07T01:47:00Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
我々はRandLA-Netを紹介した。RandLA-Netは、大規模ポイントクラウドのポイントごとの意味を推論する、効率的で軽量なニューラルネットワークアーキテクチャである。
我々のアプローチの鍵は、より複雑な点選択アプローチではなく、ランダムな点サンプリングを使用することである。
我々のRandLA-Netは、既存のアプローチよりも最大200倍高速な1回のパスで100万ポイントを処理できます。
論文 参考訳(メタデータ) (2021-07-06T05:08:34Z) - Segmenting 3D Hybrid Scenes via Zero-Shot Learning [13.161136148641813]
この研究は、ゼロショット学習の枠組みの下で、3Dハイブリッドシーンのポイントクラウドセマンティックセマンティックセマンティクスの問題に取り組むことを目的としている。
本稿では、PFNetと呼ばれる、オブジェクトの様々なクラスに対するポイント特徴を、見えていないクラスと見えないクラスの両方のセマンティック特徴を利用して合成するネットワークを提案する。
提案したPFNet は点特徴を合成するために GAN アーキテクチャを用いており、新しい意味正規化器を適用することにより、目に見えるクラスと目に見えないクラスの特徴のセマンティックな関係が統合される。
本研究では,S3DISデータセットとScanNetデータセットを6つの異なるデータ分割で再編成し,アルゴリズム評価のための2つのベンチマークを提案する。
論文 参考訳(メタデータ) (2021-07-01T13:21:49Z) - D3Feat: Joint Learning of Dense Detection and Description of 3D Local
Features [51.04841465193678]
私たちは3Dポイントクラウドに3D完全畳み込みネットワークを活用しています。
本稿では,3次元点ごとに検出スコアと記述特徴の両方を密に予測する,新しい,実践的な学習機構を提案する。
本手法は,屋内と屋外の両方のシナリオで最先端の手法を実現する。
論文 参考訳(メタデータ) (2020-03-06T12:51:09Z) - Triangle-Net: Towards Robustness in Point Cloud Learning [0.0]
本稿では, 回転, 位置シフト, スケーリングに対する不変性を同時に実現し, 点間隔に頑健な3次元分類手法を提案する。
提案手法は,ModelNet 40分類タスクにおいて,ポイントネットと3DmFVをそれぞれ35.0%,28.1%で上回っている。
論文 参考訳(メタデータ) (2020-02-27T20:42:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。