論文の概要: Federated One-Shot Ensemble Clustering
- arxiv url: http://arxiv.org/abs/2409.08396v1
- Date: Thu, 12 Sep 2024 20:55:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 18:27:26.898502
- Title: Federated One-Shot Ensemble Clustering
- Title(参考訳): Federated One-Shot Ensemble Clustering
- Authors: Rui Duan, Xin Xiong, Jueyi Liu, Katherine P. Liao, Tianxi Cai,
- Abstract要約: 複数の機関にまたがるクラスタ分析は、データ共有の制限によって大きな課題を引き起こす。
マルチサイト分析に適した新しい解法であるFONTアルゴリズムを導入する。
FONTはサイト間の1ラウンドの通信しか必要とせず、適合したモデルパラメータとクラスラベルのみを交換することでプライバシーを確保する。
- 参考スコア(独自算出の注目度): 8.883940713319696
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cluster analysis across multiple institutions poses significant challenges due to data-sharing restrictions. To overcome these limitations, we introduce the Federated One-shot Ensemble Clustering (FONT) algorithm, a novel solution tailored for multi-site analyses under such constraints. FONT requires only a single round of communication between sites and ensures privacy by exchanging only fitted model parameters and class labels. The algorithm combines locally fitted clustering models into a data-adaptive ensemble, making it broadly applicable to various clustering techniques and robust to differences in cluster proportions across sites. Our theoretical analysis validates the effectiveness of the data-adaptive weights learned by FONT, and simulation studies demonstrate its superior performance compared to existing benchmark methods. We applied FONT to identify subgroups of patients with rheumatoid arthritis across two health systems, revealing improved consistency of patient clusters across sites, while locally fitted clusters proved less transferable. FONT is particularly well-suited for real-world applications with stringent communication and privacy constraints, offering a scalable and practical solution for multi-site clustering.
- Abstract(参考訳): 複数の機関にまたがるクラスタ分析は、データ共有の制限によって大きな課題を引き起こす。
このような制約を克服するために,Federated One-shot Ensemble Clustering (FONT)アルゴリズムを導入する。
FONTはサイト間の1ラウンドの通信しか必要とせず、適合したモデルパラメータとクラスラベルのみを交換することでプライバシーを確保する。
このアルゴリズムは、局所的に適合したクラスタリングモデルをデータ適応アンサンブルに組み合わせ、様々なクラスタリング技術に広く適用し、サイト間でのクラスタ比の差異に頑健である。
本稿では,FONTが学習したデータ適応重みの有効性を理論的に検証し,既存のベンチマーク手法と比較して優れた性能を示す。
FONTを用いて関節リウマチ患者のサブグループを2つの健康システムで同定し,各部位における患者クラスターの整合性の改善がみられた。
FONTは、通信とプライバシーの制約が厳しい現実世界のアプリケーションには特に適しており、マルチサイトクラスタリングのためのスケーラブルで実用的なソリューションを提供する。
関連論文リスト
- Semi-Supervised Clustering via Structural Entropy with Different
Constraints [30.215985625884922]
本稿では,多種多様な制約を組み込んで,分割と階層クラスタリングを両立させる手法であるStructure Entropy (SSE) による半教師付きクラスタリングを提案する。
9つのクラスタリングデータセット上でSSEを評価し,それを11の半教師付きパーティショニングおよび階層クラスタリング手法と比較した。
論文 参考訳(メタデータ) (2023-12-18T04:00:40Z) - Reinforcement Federated Learning Method Based on Adaptive OPTICS
Clustering [19.73560248813166]
本稿では,フェデレート学習のための適応型OPTICSクラスタリングアルゴリズムを提案する。
クラスタリング環境をMarkov決定プロセスとして認識することで、OPTICSクラスタの最良のパラメータを見つけることがゴールです。
本手法の信頼性と実用性は, 実験データから検証され, 有効性と優越性が確認された。
論文 参考訳(メタデータ) (2023-06-22T13:11:19Z) - Efficient Bilateral Cross-Modality Cluster Matching for Unsupervised Visible-Infrared Person ReID [56.573905143954015]
本稿では, クラスタ間マッチングによるモダリティギャップを低減するための, クラスタマッチングに基づく新たな学習フレームワークを提案する。
このような監視信号の下では、クラスタレベルで特徴を協調的に整列させるために、モダリティ・特定・モダリティ・非依存(MSMA)コントラスト学習フレームワークが提案されている。
公開SYSU-MM01とRegDBデータセットの実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-05-22T03:27:46Z) - DivClust: Controlling Diversity in Deep Clustering [47.85350249697335]
DivClustはコンセンサスクラスタリングソリューションを生成し、単一クラスタリングベースラインを一貫して上回る。
提案手法は, フレームワークやデータセット間の多様性を, 計算コストを極めて小さく効果的に制御する。
論文 参考訳(メタデータ) (2023-04-03T14:45:43Z) - Differentially Private Federated Clustering over Non-IID Data [59.611244450530315]
クラスタリングクラスタ(FedC)問題は、巨大なクライアント上に分散されたラベルなしデータサンプルを、サーバのオーケストレーションの下で有限のクライアントに正確に分割することを目的としている。
本稿では,DP-Fedと呼ばれる差分プライバシー収束手法を用いた新しいFedCアルゴリズムを提案する。
提案するDP-Fedの様々な属性は、プライバシー保護の理論的解析、特に非識別的かつ独立に分散された(非i.d.)データの場合において得られる。
論文 参考訳(メタデータ) (2023-01-03T05:38:43Z) - Simple and Scalable Algorithms for Cluster-Aware Precision Medicine [0.0]
共同クラスタリングと埋め込みに対するシンプルでスケーラブルなアプローチを提案する。
この新しいクラスタ対応の埋め込みアプローチは、現在の共同埋め込みとクラスタリング法の複雑さと限界を克服する。
当社のアプローチでは,ユーザが希望するクラスタ数を選択する必要はなく,階層的にクラスタ化された埋め込みの解釈可能なデンドログラムを生成する。
論文 参考訳(メタデータ) (2022-11-29T19:27:26Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
我々は,非負の特徴特性を活用し,多視点情報を統合された共同学習フレームワークに組み込む,新しいクラスタリングモデルを定式化する。
また、深層機能に基づいたクラスタリングデータに対するマルチモデル非負グラフベースのアプローチを初めて検討する。
論文 参考訳(メタデータ) (2022-11-03T08:18:27Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
異種環境における分散学習のためのコミュニケーション効率化手法のファミリーを提案する。
ユーザによるローカル計算に基づくワンショットアプローチと、サーバにおけるクラスタリングベースのアグリゲーションステップは、強力な学習保証を提供する。
厳密な凸問題に対しては,ユーザ毎のデータ点数がしきい値を超える限り,提案手法はサンプルサイズの観点から順序最適平均二乗誤差率を達成する。
論文 参考訳(メタデータ) (2022-09-22T09:04:10Z) - Deep Conditional Gaussian Mixture Model for Constrained Clustering [7.070883800886882]
制約付きクラスタリングは、部分的にラベル付けされたデータの増加量に関する事前情報を利用することができる。
本稿では、直感的で解釈可能で、勾配変動推論の枠組みで効率的に訓練できる制約付きクラスタリングのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-11T13:38:09Z) - Ensemble Model with Batch Spectral Regularization and Data Blending for
Cross-Domain Few-Shot Learning with Unlabeled Data [75.94147344921355]
多様な特徴変換行列を用いてマルチブランチアンサンブルフレームワークを構築する。
本研究では,未ラベルデータを利用したデータブレンディング手法を提案し,対象領域におけるスパースサポートを増強する。
論文 参考訳(メタデータ) (2020-06-08T02:27:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。