Enhancing Privacy in ControlNet and Stable Diffusion via Split Learning
- URL: http://arxiv.org/abs/2409.08503v1
- Date: Fri, 13 Sep 2024 02:55:22 GMT
- Title: Enhancing Privacy in ControlNet and Stable Diffusion via Split Learning
- Authors: Dixi Yao,
- Abstract summary: We find conventional federated learning and split learning unsuitable for ControlNet training.
We propose a new distributed learning structure that eliminates the need for the server to send gradients back.
We propose a privacy-preserving activation function and a method to prevent private text prompts from leaving clients.
- Score: 0.10878040851638002
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the emerging trend of large generative models, ControlNet is introduced to enable users to fine-tune pre-trained models with their own data for various use cases. A natural question arises: how can we train ControlNet models while ensuring users' data privacy across distributed devices? Exploring different distributed training schemes, we find conventional federated learning and split learning unsuitable. Instead, we propose a new distributed learning structure that eliminates the need for the server to send gradients back. Through a comprehensive evaluation of existing threats, we discover that in the context of training ControlNet with split learning, most existing attacks are ineffective, except for two mentioned in previous literature. To counter these threats, we leverage the properties of diffusion models and design a new timestep sampling policy during forward processes. We further propose a privacy-preserving activation function and a method to prevent private text prompts from leaving clients, tailored for image generation with diffusion models. Our experimental results demonstrate that our algorithms and systems greatly enhance the efficiency of distributed training for ControlNet while ensuring users' data privacy without compromising image generation quality.
Related papers
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - Forget to Flourish: Leveraging Machine-Unlearning on Pretrained Language Models for Privacy Leakage [12.892449128678516]
Fine-tuning language models on private data for downstream applications poses significant privacy risks.
Several popular community platforms now offer convenient distribution of a large variety of pre-trained models.
We introduce a novel poisoning technique that uses model-unlearning as an attack tool.
arXiv Detail & Related papers (2024-08-30T15:35:09Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Federated Face Forgery Detection Learning with Personalized Representation [63.90408023506508]
Deep generator technology can produce high-quality fake videos that are indistinguishable, posing a serious social threat.
Traditional forgery detection methods directly centralized training on data.
The paper proposes a novel federated face forgery detection learning with personalized representation.
arXiv Detail & Related papers (2024-06-17T02:20:30Z) - Ungeneralizable Examples [70.76487163068109]
Current approaches to creating unlearnable data involve incorporating small, specially designed noises.
We extend the concept of unlearnable data to conditional data learnability and introduce textbfUntextbfGeneralizable textbfExamples (UGEs)
UGEs exhibit learnability for authorized users while maintaining unlearnability for potential hackers.
arXiv Detail & Related papers (2024-04-22T09:29:14Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
In this paper, we unveil a new vulnerability: the privacy backdoor attack.
When a victim fine-tunes a backdoored model, their training data will be leaked at a significantly higher rate than if they had fine-tuned a typical model.
Our findings highlight a critical privacy concern within the machine learning community and call for a reevaluation of safety protocols in the use of open-source pre-trained models.
arXiv Detail & Related papers (2024-04-01T16:50:54Z) - Rethinking Privacy in Machine Learning Pipelines from an Information
Flow Control Perspective [16.487545258246932]
Modern machine learning systems use models trained on ever-growing corpora.
metadata such as ownership, access control, or licensing information is ignored during training.
We take an information flow control perspective to describe machine learning systems.
arXiv Detail & Related papers (2023-11-27T13:14:39Z) - One-Shot Federated Learning with Classifier-Guided Diffusion Models [44.604485649167216]
One-shot federated learning (OSFL) has gained attention in recent years due to its low communication cost.
In this paper, we explore the novel opportunities that diffusion models bring to OSFL and propose FedCADO.
FedCADO generates data that complies with clients' distributions and subsequently training the aggregated model on the server.
arXiv Detail & Related papers (2023-11-15T11:11:25Z) - A Data-Free Approach to Mitigate Catastrophic Forgetting in Federated
Class Incremental Learning for Vision Tasks [34.971800168823215]
This paper presents a framework for $textbffederated class incremental learning$ that utilizes a generative model to synthesize samples from past distributions.
To preserve privacy, the generative model is trained on the server using data-free methods at the end of each task without requesting data from clients.
arXiv Detail & Related papers (2023-11-13T22:21:27Z) - Privacy Side Channels in Machine Learning Systems [87.53240071195168]
We introduce privacy side channels: attacks that exploit system-level components to extract private information.
For example, we show that deduplicating training data before applying differentially-private training creates a side-channel that completely invalidates any provable privacy guarantees.
We further show that systems which block language models from regenerating training data can be exploited to exfiltrate private keys contained in the training set.
arXiv Detail & Related papers (2023-09-11T16:49:05Z) - Concentrated Differentially Private and Utility Preserving Federated
Learning [24.239992194656164]
Federated learning is a machine learning setting where a set of edge devices collaboratively train a model under the orchestration of a central server.
In this paper, we develop a federated learning approach that addresses the privacy challenge without much degradation on model utility.
We provide a tight end-to-end privacy guarantee of our approach and analyze its theoretical convergence rates.
arXiv Detail & Related papers (2020-03-30T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.