Privacy Side Channels in Machine Learning Systems
- URL: http://arxiv.org/abs/2309.05610v2
- Date: Thu, 18 Jul 2024 08:12:46 GMT
- Title: Privacy Side Channels in Machine Learning Systems
- Authors: Edoardo Debenedetti, Giorgio Severi, Nicholas Carlini, Christopher A. Choquette-Choo, Matthew Jagielski, Milad Nasr, Eric Wallace, Florian Tramèr,
- Abstract summary: We introduce privacy side channels: attacks that exploit system-level components to extract private information.
For example, we show that deduplicating training data before applying differentially-private training creates a side-channel that completely invalidates any provable privacy guarantees.
We further show that systems which block language models from regenerating training data can be exploited to exfiltrate private keys contained in the training set.
- Score: 87.53240071195168
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most current approaches for protecting privacy in machine learning (ML) assume that models exist in a vacuum. Yet, in reality, these models are part of larger systems that include components for training data filtering, output monitoring, and more. In this work, we introduce privacy side channels: attacks that exploit these system-level components to extract private information at far higher rates than is otherwise possible for standalone models. We propose four categories of side channels that span the entire ML lifecycle (training data filtering, input preprocessing, output post-processing, and query filtering) and allow for enhanced membership inference, data extraction, and even novel threats such as extraction of users' test queries. For example, we show that deduplicating training data before applying differentially-private training creates a side-channel that completely invalidates any provable privacy guarantees. We further show that systems which block language models from regenerating training data can be exploited to exfiltrate private keys contained in the training set--even if the model did not memorize these keys. Taken together, our results demonstrate the need for a holistic, end-to-end privacy analysis of machine learning systems.
Related papers
- Rethinking Privacy in Machine Learning Pipelines from an Information
Flow Control Perspective [16.487545258246932]
Modern machine learning systems use models trained on ever-growing corpora.
metadata such as ownership, access control, or licensing information is ignored during training.
We take an information flow control perspective to describe machine learning systems.
arXiv Detail & Related papers (2023-11-27T13:14:39Z) - Privacy Preserving Large Language Models: ChatGPT Case Study Based Vision and Framework [6.828884629694705]
This article proposes the conceptual model called PrivChatGPT, a privacy-generative model for LLMs.
PrivChatGPT consists of two main components i.e., preserving user privacy during the data curation/pre-processing together with preserving private context and the private training process for large-scale data.
arXiv Detail & Related papers (2023-10-19T06:55:13Z) - Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining [75.25943383604266]
We question whether the use of large Web-scraped datasets should be viewed as differential-privacy-preserving.
We caution that publicizing these models pretrained on Web data as "private" could lead to harm and erode the public's trust in differential privacy as a meaningful definition of privacy.
We conclude by discussing potential paths forward for the field of private learning, as public pretraining becomes more popular and powerful.
arXiv Detail & Related papers (2022-12-13T10:41:12Z) - A Survey on Differential Privacy with Machine Learning and Future
Outlook [0.0]
differential privacy is used to protect machine learning models from any attacks and vulnerabilities.
This survey paper presents different differentially private machine learning algorithms categorized into two main categories.
arXiv Detail & Related papers (2022-11-19T14:20:53Z) - Privacy-Preserving Machine Learning for Collaborative Data Sharing via
Auto-encoder Latent Space Embeddings [57.45332961252628]
Privacy-preserving machine learning in data-sharing processes is an ever-critical task.
This paper presents an innovative framework that uses Representation Learning via autoencoders to generate privacy-preserving embedded data.
arXiv Detail & Related papers (2022-11-10T17:36:58Z) - Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets [53.866927712193416]
We show that an adversary who can poison a training dataset can cause models trained on this dataset to leak private details belonging to other parties.
Our attacks are effective across membership inference, attribute inference, and data extraction.
Our results cast doubts on the relevance of cryptographic privacy guarantees in multiparty protocols for machine learning.
arXiv Detail & Related papers (2022-03-31T18:06:28Z) - Statistical Privacy Guarantees of Machine Learning Preprocessing
Techniques [1.198727138090351]
We adapt a privacy violation detection framework based on statistical methods to measure privacy levels of machine learning pipelines.
We apply the newly created framework to show that resampling techniques used when dealing with imbalanced datasets cause the resultant model to leak more privacy.
arXiv Detail & Related papers (2021-09-06T14:08:47Z) - Decentralized Federated Learning Preserves Model and Data Privacy [77.454688257702]
We propose a fully decentralized approach, which allows to share knowledge between trained models.
Students are trained on the output of their teachers via synthetically generated input data.
The results show that an untrained student model, trained on the teachers output reaches comparable F1-scores as the teacher.
arXiv Detail & Related papers (2021-02-01T14:38:54Z) - Trade-offs between membership privacy & adversarially robust learning [13.37805637358556]
We identify settings where standard models will overfit to a larger extent in comparison to robust models.
The degree of overfitting naturally depends on the amount of data available for training.
arXiv Detail & Related papers (2020-06-08T14:20:12Z) - TIPRDC: Task-Independent Privacy-Respecting Data Crowdsourcing Framework
for Deep Learning with Anonymized Intermediate Representations [49.20701800683092]
We present TIPRDC, a task-independent privacy-respecting data crowdsourcing framework with anonymized intermediate representation.
The goal of this framework is to learn a feature extractor that can hide the privacy information from the intermediate representations; while maximally retaining the original information embedded in the raw data for the data collector to accomplish unknown learning tasks.
arXiv Detail & Related papers (2020-05-23T06:21:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.