論文の概要: Learning Graph-based Patch Representations for Identifying and Assessing Silent Vulnerability Fixes
- arxiv url: http://arxiv.org/abs/2409.08512v1
- Date: Fri, 13 Sep 2024 03:23:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 17:58:09.203492
- Title: Learning Graph-based Patch Representations for Identifying and Assessing Silent Vulnerability Fixes
- Title(参考訳): 無声脆弱性修正の同定と評価のためのグラフベースパッチ表現の学習
- Authors: Mei Han, Lulu Wang, Jianming Chang, Bixin Li, Chunguang Zhang,
- Abstract要約: ソフトウェアプロジェクトは多くのサードパーティのライブラリに依存しているため、リスクの高い脆弱性は依存関係チェーンを通じて下流のプロジェクトへと伝播する可能性がある。
無力な脆弱性修正は、ダウンストリームソフトウェアが緊急のセキュリティ問題にタイムリーに気付いておらず、ソフトウェアにセキュリティリスクを生じさせる。
本稿ではGRAphベースのパッチrEpresentationであるGRAPEを提案する。
- 参考スコア(独自算出の注目度): 5.983725940750908
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Software projects are dependent on many third-party libraries, therefore high-risk vulnerabilities can propagate through the dependency chain to downstream projects. Owing to the subjective nature of patch management, software vendors commonly fix vulnerabilities silently. Silent vulnerability fixes cause downstream software to be unaware of urgent security issues in a timely manner, posing a security risk to the software. Presently, most of the existing works for vulnerability fix identification only consider the changed code as a sequential textual sequence, ignoring the structural information of the code. In this paper, we propose GRAPE, a GRAph-based Patch rEpresentation that aims to 1) provide a unified framework for getting vulnerability fix patches representation; and 2) enhance the understanding of the intent and potential impact of patches by extracting structural information of the code. GRAPE employs a novel joint graph structure (MCPG) to represent the syntactic and semantic information of fix patches and embeds both nodes and edges. Subsequently, a carefully designed graph convolutional neural network (NE-GCN) is utilized to fully learn structural features by leveraging the attributes of the nodes and edges. Moreover, we construct a dataset containing 2251 silent fixes. For the experimental section, we evaluated patch representation on three tasks, including vulnerability fix identification, vulnerability types classification, and vulnerability severity classification. Experimental results indicate that, in comparison to baseline methods, GRAPE can more effectively reduce false positives and omissions of vulnerability fixes identification and provide accurate vulnerability assessments.
- Abstract(参考訳): ソフトウェアプロジェクトは多くのサードパーティのライブラリに依存しているため、リスクの高い脆弱性は依存関係チェーンを通じて下流のプロジェクトへと伝播する可能性がある。
パッチ管理の主観的な性質のため、ソフトウェアベンダは通常、脆弱性を静かに修正する。
無力な脆弱性修正は、ダウンストリームソフトウェアが緊急のセキュリティ問題にタイムリーに気付いておらず、ソフトウェアにセキュリティリスクを生じさせる。
現在、脆弱性の特定のための既存の作業の多くは、変更されたコードをシーケンシャルなテキストシーケンスとしてのみ考慮しており、コードの構造的情報を無視している。
本稿では,GRAphをベースとしたPatch rEpresentationであるGRAPEを提案する。
1)脆弱性修正パッチの表現を得るための統一されたフレームワークを提供する。
2)コードの構造情報を抽出することでパッチの意図や潜在的影響の理解を深める。
GRAPEは、固定パッチの構文情報と意味情報を表現し、ノードとエッジの両方を埋め込む新しいジョイントグラフ構造(MCPG)を採用している。
その後、慎重に設計されたグラフ畳み込みニューラルネットワーク(NE-GCN)を用いて、ノードとエッジの属性を活用することで、構造的特徴を完全に学習する。
さらに,2251個のサイレントフィックスを含むデータセットを構築した。
実験では,脆弱性修正の特定,脆弱性タイプ分類,脆弱性重大度分類などの3つのタスクに対するパッチ表現の評価を行った。
実験結果から,GRAPEはベースライン法と比較して,誤検出や脆弱性修正の欠落をより効果的に低減し,正確な脆弱性評価を行うことが示唆された。
関連論文リスト
- The Impact of SBOM Generators on Vulnerability Assessment in Python: A Comparison and a Novel Approach [56.4040698609393]
Software Bill of Materials (SBOM) は、ソフトウェア構成における透明性と妥当性を高めるツールとして推奨されている。
現在のSBOM生成ツールは、コンポーネントや依存関係を識別する際の不正確さに悩まされることが多い。
提案するPIP-sbomは,その欠点に対処する新しいピップインスパイアされたソリューションである。
論文 参考訳(メタデータ) (2024-09-10T10:12:37Z) - ReposVul: A Repository-Level High-Quality Vulnerability Dataset [13.90550557801464]
自動データ収集フレームワークを提案し,ReposVulと呼ばれる最初のリポジトリレベルの高品質な脆弱性データセットを構築した。
提案するフレームワークは,主に3つのモジュールから構成されている。(1)脆弱性解消モジュールは,脆弱性修正に関連するコード変更を,大規模言語モデル (LLM) と静的解析ツールを併用した,絡み合ったパッチから識別することを目的としたもので,(2)脆弱性の相互呼び出し関係の把握を目的とした多言語依存性抽出モジュールで,リポジトリレベル,ファイルレベル,関数レベルを含む各脆弱性パッチに対して,複数の粒度情報を構築する。
論文 参考訳(メタデータ) (2024-01-24T01:27:48Z) - The Vulnerability Is in the Details: Locating Fine-grained Information of Vulnerable Code Identified by Graph-based Detectors [33.395068754566935]
VULEXPLAINERは、粗いレベルの脆弱なコードスニペットから脆弱性クリティカルなコード行を見つけるためのツールである。
C/C++の一般的な8つの脆弱性に対して、90%の精度で脆弱性をトリガするコードステートメントにフラグを付けることができる。
論文 参考訳(メタデータ) (2024-01-05T10:15:04Z) - Just-in-Time Detection of Silent Security Patches [7.840762542485285]
セキュリティパッチは黙秘される可能性がある。つまり、CVEのような包括的なアドバイザリを常に備えているわけではない。
この透明性の欠如により、ユーザーは利用可能なセキュリティアップデートを気にせず、攻撃者が未パッチの脆弱性を悪用する十分な機会を提供する。
本稿では,大規模言語モデル(LLM)を活用して,生成されたコード変更説明を用いてパッチ情報を拡張することを提案する。
論文 参考訳(メタデータ) (2023-12-02T22:53:26Z) - Silent Vulnerability-fixing Commit Identification Based on Graph Neural
Networks [4.837912059099674]
VFFINDERは、サイレント脆弱性の自動検出のためのグラフベースのアプローチである。
VFFINDERは、アテンションベースのグラフニューラルネットワークモデルを使用して、脆弱性修正コミットと非修正コミットを区別する。
以上の結果から,VFFINDERは精度272-420%,リコール22-70%,F13.2X-8.2Xに改善した。
論文 参考訳(メタデータ) (2023-09-15T07:51:39Z) - REEF: A Framework for Collecting Real-World Vulnerabilities and Fixes [40.401211102969356]
本稿では,REal-world vulnErabilities and Fixesをオープンソースリポジトリから収集するための自動収集フレームワークREEFを提案する。
脆弱性とその修正を収集する多言語クローラを開発し、高品質な脆弱性修正ペアをフィルタするためのメトリクスを設計する。
大規模な実験を通じて,我々の手法が高品質な脆弱性修正ペアを収集し,強力な説明を得られることを示す。
論文 参考訳(メタデータ) (2023-09-15T02:50:08Z) - VFFINDER: A Graph-based Approach for Automated Silent Vulnerability-Fix
Identification [4.837912059099674]
VFFINDERは、サイレント脆弱性の自動検出のためのグラフベースのアプローチである。
これは、アテンションベースのグラフニューラルネットワークモデルを使用して、脆弱性修正コミットと非修正コミットを区別する。
以上の結果から,VFFINDERの精度は39~83%,リコール率19~148%,F1では30~109%向上した。
論文 参考訳(メタデータ) (2023-09-05T05:55:18Z) - Span Classification with Structured Information for Disfluency Detection
in Spoken Utterances [47.05113261111054]
本稿では,音声音声からテキスト中の不一致を検出する新しいアーキテクチャを提案する。
提案手法は, 広範に使われているイングリッシュスイッチボードを用いて, ディフルエンシ検出の最先端化を実現する。
論文 参考訳(メタデータ) (2022-03-30T03:22:29Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
この研究は、コードコーパスから安全でないパターンを自動的に学習するためのディープラーニングアプローチを探求する。
コードには解析を伴うグラフ構造が自然に認められるため,プログラムの意味的文脈と構造的規則性の両方を利用する新しいグラフニューラルネットワーク(GNN)を開発する。
論文 参考訳(メタデータ) (2021-09-07T21:24:36Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
本稿では,グラフ構造化データを用いた学習において,情報難読化による機密属性保護の問題について検討する。
本稿では,全変動量とワッサーシュタイン距離を交互に学習することで,事前決定された機密属性を局所的にフィルタリングするフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-28T17:55:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。