Learning Graph-based Patch Representations for Identifying and Assessing Silent Vulnerability Fixes
- URL: http://arxiv.org/abs/2409.08512v1
- Date: Fri, 13 Sep 2024 03:23:11 GMT
- Title: Learning Graph-based Patch Representations for Identifying and Assessing Silent Vulnerability Fixes
- Authors: Mei Han, Lulu Wang, Jianming Chang, Bixin Li, Chunguang Zhang,
- Abstract summary: Software projects are dependent on many third-party libraries, therefore high-risk vulnerabilities can propagate through the dependency chain to downstream projects.
Silent vulnerability fixes cause downstream software to be unaware of urgent security issues in a timely manner, posing a security risk to the software.
We propose GRAPE, a GRAph-based Patch rEpresentation that aims to provide a unified framework for getting vulnerability fix patches representation.
- Score: 5.983725940750908
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Software projects are dependent on many third-party libraries, therefore high-risk vulnerabilities can propagate through the dependency chain to downstream projects. Owing to the subjective nature of patch management, software vendors commonly fix vulnerabilities silently. Silent vulnerability fixes cause downstream software to be unaware of urgent security issues in a timely manner, posing a security risk to the software. Presently, most of the existing works for vulnerability fix identification only consider the changed code as a sequential textual sequence, ignoring the structural information of the code. In this paper, we propose GRAPE, a GRAph-based Patch rEpresentation that aims to 1) provide a unified framework for getting vulnerability fix patches representation; and 2) enhance the understanding of the intent and potential impact of patches by extracting structural information of the code. GRAPE employs a novel joint graph structure (MCPG) to represent the syntactic and semantic information of fix patches and embeds both nodes and edges. Subsequently, a carefully designed graph convolutional neural network (NE-GCN) is utilized to fully learn structural features by leveraging the attributes of the nodes and edges. Moreover, we construct a dataset containing 2251 silent fixes. For the experimental section, we evaluated patch representation on three tasks, including vulnerability fix identification, vulnerability types classification, and vulnerability severity classification. Experimental results indicate that, in comparison to baseline methods, GRAPE can more effectively reduce false positives and omissions of vulnerability fixes identification and provide accurate vulnerability assessments.
Related papers
- The Impact of SBOM Generators on Vulnerability Assessment in Python: A Comparison and a Novel Approach [56.4040698609393]
Software Bill of Materials (SBOM) has been promoted as a tool to increase transparency and verifiability in software composition.
Current SBOM generation tools often suffer from inaccuracies in identifying components and dependencies.
We propose PIP-sbom, a novel pip-inspired solution that addresses their shortcomings.
arXiv Detail & Related papers (2024-09-10T10:12:37Z) - ReposVul: A Repository-Level High-Quality Vulnerability Dataset [13.90550557801464]
We propose an automated data collection framework and construct the first repository-level high-quality vulnerability dataset named ReposVul.
The proposed framework mainly contains three modules: (1) A vulnerability untangling module, aiming at distinguishing vulnerability-fixing related code changes from tangled patches, in which the Large Language Models (LLMs) and static analysis tools are jointly employed, (2) A multi-granularity dependency extraction module, aiming at capturing the inter-procedural call relationships of vulnerabilities, in which we construct multiple-granularity information for each vulnerability patch, including repository-level, file-level, function-level
arXiv Detail & Related papers (2024-01-24T01:27:48Z) - The Vulnerability Is in the Details: Locating Fine-grained Information of Vulnerable Code Identified by Graph-based Detectors [33.395068754566935]
VULEXPLAINER is a tool for locating vulnerability-critical code lines from coarse-level vulnerable code snippets.
It can flag the vulnerability-triggering code statements with an accuracy of around 90% against eight common C/C++ vulnerabilities.
arXiv Detail & Related papers (2024-01-05T10:15:04Z) - Just-in-Time Detection of Silent Security Patches [7.840762542485285]
Security patches can be em silent, i.e., they do not always come with comprehensive advisories such as CVEs.
This lack of transparency leaves users oblivious to available security updates, providing ample opportunity for attackers to exploit unpatched vulnerabilities.
We propose to leverage large language models (LLMs) to augment patch information with generated code change explanations.
arXiv Detail & Related papers (2023-12-02T22:53:26Z) - Silent Vulnerability-fixing Commit Identification Based on Graph Neural
Networks [4.837912059099674]
VFFINDER is a graph-based approach for automated silent vulnerability fix identification.
VFFINDER distinguishes vulnerability-fixing commits from non-fixing ones using attention-based graph neural network models.
Our results show that VFFINDER significantly improves the state-of-the-art methods by 272-420% in Precision, 22-70% in Recall, and 3.2X-8.2X in F1.
arXiv Detail & Related papers (2023-09-15T07:51:39Z) - REEF: A Framework for Collecting Real-World Vulnerabilities and Fixes [40.401211102969356]
We propose an automated collecting framework REEF to collect REal-world vulnErabilities and Fixes from open-source repositories.
We develop a multi-language crawler to collect vulnerabilities and their fixes, and design metrics to filter for high-quality vulnerability-fix pairs.
Through extensive experiments, we demonstrate that our approach can collect high-quality vulnerability-fix pairs and generate strong explanations.
arXiv Detail & Related papers (2023-09-15T02:50:08Z) - VFFINDER: A Graph-based Approach for Automated Silent Vulnerability-Fix
Identification [4.837912059099674]
VFFINDER is a graph-based approach for automated silent vulnerability fix identification.
It distinguishes vulnerability-fixing commits from non-fixing ones using attention-based graph neural network models.
Our results show that VFFINDER significantly improves the state-of-the-art methods by 39-83% in Precision, 19-148% in Recall, and 30-109% in F1.
arXiv Detail & Related papers (2023-09-05T05:55:18Z) - Span Classification with Structured Information for Disfluency Detection
in Spoken Utterances [47.05113261111054]
We propose a novel architecture for detecting disfluencies in transcripts from spoken utterances.
Our proposed model achieves state-of-the-art results on the widely used English Switchboard for disfluency detection.
arXiv Detail & Related papers (2022-03-30T03:22:29Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
This paper presents VELVET, a novel ensemble learning approach to locate vulnerable statements in source code.
Our model combines graph-based and sequence-based neural networks to successfully capture the local and global context of a program graph.
VELVET achieves 99.6% and 43.6% top-1 accuracy over synthetic data and real-world data, respectively.
arXiv Detail & Related papers (2021-12-20T22:45:27Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
This work explores a deep learning approach to automatically learn the insecure patterns from code corpora.
Because code naturally admits graph structures with parsing, we develop a novel graph neural network (GNN) to exploit both the semantic context and structural regularity of a program.
arXiv Detail & Related papers (2021-09-07T21:24:36Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.