Causal GNNs: A GNN-Driven Instrumental Variable Approach for Causal Inference in Networks
- URL: http://arxiv.org/abs/2409.08544v1
- Date: Fri, 13 Sep 2024 05:39:00 GMT
- Title: Causal GNNs: A GNN-Driven Instrumental Variable Approach for Causal Inference in Networks
- Authors: Xiaojing Du, Feiyu Yang, Wentao Gao, Xiongren Chen,
- Abstract summary: CgNN is a novel approach to mitigate hidden confounder bias and improve causal effect estimation.
Our results demonstrate that CgNN effectively mitigates hidden confounder bias and offers a robust GNN-driven IV framework for causal inference in complex network data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As network data applications continue to expand, causal inference within networks has garnered increasing attention. However, hidden confounders complicate the estimation of causal effects. Most methods rely on the strong ignorability assumption, which presumes the absence of hidden confounders-an assumption that is both difficult to validate and often unrealistic in practice. To address this issue, we propose CgNN, a novel approach that leverages network structure as instrumental variables (IVs), combined with graph neural networks (GNNs) and attention mechanisms, to mitigate hidden confounder bias and improve causal effect estimation. By utilizing network structure as IVs, we reduce confounder bias while preserving the correlation with treatment. Our integration of attention mechanisms enhances robustness and improves the identification of important nodes. Validated on two real-world datasets, our results demonstrate that CgNN effectively mitigates hidden confounder bias and offers a robust GNN-driven IV framework for causal inference in complex network data.
Related papers
- Enhancing Robustness of Graph Neural Networks through p-Laplacian [2.3942577670144423]
Graph Neural Networks (GNNs) have shown great promise in various applications.
adversarial attacks can happen over the data, whether during training (poisoning attack) or during testing (evasion attack)
This paper presents a computationally efficient framework, namely, pLapGNN, based on weighted p-Laplacian for making GNNs robust.
arXiv Detail & Related papers (2024-09-27T18:51:05Z) - Advanced Financial Fraud Detection Using GNN-CL Model [13.5240775562349]
The innovative GNN-CL model proposed in this paper marks a breakthrough in the field of financial fraud detection.
It combines the advantages of graph neural networks (gnn), convolutional neural networks (cnn) and long short-term memory (LSTM) networks.
A key novelty of this paper is the use of multilayer perceptrons (MLPS) to estimate node similarity.
arXiv Detail & Related papers (2024-07-09T03:59:06Z) - Explainable AI Security: Exploring Robustness of Graph Neural Networks to Adversarial Attacks [14.89001880258583]
Graph neural networks (GNNs) have achieved tremendous success, but recent studies have shown that GNNs are vulnerable to adversarial attacks.
We investigate the adversarial robustness of GNNs by considering graph data patterns, model-specific factors, and the transferability of adversarial examples.
This work illuminates the vulnerabilities of GNNs and opens many promising avenues for designing robust GNNs.
arXiv Detail & Related papers (2024-06-20T01:24:18Z) - Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
Graph Neural Networks (GNNs) have been extensively used in various real-world applications.
However, the predictive uncertainty of GNNs stemming from diverse sources can lead to unstable and erroneous predictions.
This survey aims to provide a comprehensive overview of the GNNs from the perspective of uncertainty.
arXiv Detail & Related papers (2024-03-11T21:54:52Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - Adversarial Machine Learning in Latent Representations of Neural
Networks [9.372908891132772]
Distributed deep neural networks (DNNs) have been shown to reduce the computational burden of mobile devices and decrease the end-to-end inference latency in edge computing scenarios.
This paper rigorously analyzes the robustness of distributed DNNs against adversarial action.
arXiv Detail & Related papers (2023-09-29T17:01:29Z) - Information Flow in Graph Neural Networks: A Clinical Triage Use Case [49.86931948849343]
Graph Neural Networks (GNNs) have gained popularity in healthcare and other domains due to their ability to process multi-modal and multi-relational graphs.
We investigate how the flow of embedding information within GNNs affects the prediction of links in Knowledge Graphs (KGs)
Our results demonstrate that incorporating domain knowledge into the GNN connectivity leads to better performance than using the same connectivity as the KG or allowing unconstrained embedding propagation.
arXiv Detail & Related papers (2023-09-12T09:18:12Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
Recent years have emerged a surge of interest in SNNs owing to their remarkable potential to handle time-dependent and event-driven data.
There has been a dearth of comprehensive studies examining the impact of intrinsic structures within spiking computations.
This work delves deep into the intrinsic structures of SNNs, by elucidating their influence on the expressivity of SNNs.
arXiv Detail & Related papers (2022-06-21T09:42:30Z) - Generalizing Graph Neural Networks on Out-Of-Distribution Graphs [51.33152272781324]
Graph Neural Networks (GNNs) are proposed without considering the distribution shifts between training and testing graphs.
In such a setting, GNNs tend to exploit subtle statistical correlations existing in the training set for predictions, even though it is a spurious correlation.
We propose a general causal representation framework, called StableGNN, to eliminate the impact of spurious correlations.
arXiv Detail & Related papers (2021-11-20T18:57:18Z) - Unveiling the potential of Graph Neural Networks for robust Intrusion
Detection [2.21481607673149]
We propose a novel Graph Neural Network (GNN) model to learn flow patterns of attacks structured as graphs.
Our model is able to maintain the same level of accuracy as in previous experiments, while state-of-the-art ML techniques degrade up to 50% their accuracy (F1-score) under adversarial attacks.
arXiv Detail & Related papers (2021-07-30T16:56:39Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.