論文の概要: Hybrid-TTA: Continual Test-time Adaptation via Dynamic Domain Shift Detection
- arxiv url: http://arxiv.org/abs/2409.08566v1
- Date: Fri, 13 Sep 2024 06:36:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 17:38:30.939093
- Title: Hybrid-TTA: Continual Test-time Adaptation via Dynamic Domain Shift Detection
- Title(参考訳): Hybrid-TTA:動的ドメインシフト検出による連続的なテスト時間適応
- Authors: Hyewon Park, Hyejin Park, Jueun Ko, Dongbo Min,
- Abstract要約: 継続的テスト時間適応(CTTA)は、制御されたトレーニング環境と実世界のシナリオの間のドメインギャップを埋めるための重要なアプローチとして登場した。
本稿では,最適適応のためのインスタンスワイドチューニング手法を動的に選択する総合的手法であるHybrid-TTAを提案する。
提案手法は,Cityscapes-to-ACDCベンチマークデータセットにおけるmIoUの1.6%改善を実現する。
- 参考スコア(独自算出の注目度): 14.382503104075917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continual Test Time Adaptation (CTTA) has emerged as a critical approach for bridging the domain gap between the controlled training environments and the real-world scenarios, enhancing model adaptability and robustness. Existing CTTA methods, typically categorized into Full-Tuning (FT) and Efficient-Tuning (ET), struggle with effectively addressing domain shifts. To overcome these challenges, we propose Hybrid-TTA, a holistic approach that dynamically selects instance-wise tuning method for optimal adaptation. Our approach introduces the Dynamic Domain Shift Detection (DDSD) strategy, which identifies domain shifts by leveraging temporal correlations in input sequences and dynamically switches between FT and ET to adapt to varying domain shifts effectively. Additionally, the Masked Image Modeling based Adaptation (MIMA) framework is integrated to ensure domain-agnostic robustness with minimal computational overhead. Our Hybrid-TTA achieves a notable 1.6%p improvement in mIoU on the Cityscapes-to-ACDC benchmark dataset, surpassing previous state-of-the-art methods and offering a robust solution for real-world continual adaptation challenges.
- Abstract(参考訳): 継続的テスト時間適応(CTTA)は、制御されたトレーニング環境と現実のシナリオの間のドメインギャップを埋める重要なアプローチとして現れ、モデルの適応性と堅牢性を高めている。
既存のCTTA法は、一般的にフルチューニング(FT)と効率チューニング(ET)に分類され、ドメインシフトを効果的に扱うのに苦労する。
これらの課題を克服するために、最適適応のためのインスタンスワイドチューニングを動的に選択する総合的なアプローチであるHybrid-TTAを提案する。
提案手法では,入力シーケンスの時間的相関を利用してドメインシフトを識別し,FTとETを動的に切り替えてドメインシフトに適応する動的ドメインシフト検出(DDSD)手法を提案する。
さらに、Masked Image Modeling Based Adaptation (MIMA)フレームワークは、最小の計算オーバーヘッドでドメインに依存しない堅牢性を保証するために統合されている。
我々のHybrid-TTAは、Cityscapes-to-ACDCベンチマークデータセットでmIoUを1.6%改善し、従来の最先端の手法を超越し、現実世界の継続的適応課題に対する堅牢なソリューションを提供する。
関連論文リスト
- BECoTTA: Input-dependent Online Blending of Experts for Continual Test-time Adaptation [59.1863462632777]
連続テスト時間適応(CTTA)は、学習済みの知識を維持しながら、継続的に見えない領域に効率的に適応するために必要である。
本稿では,CTTAの入力依存かつ効率的なモジュール化フレームワークであるBECoTTAを提案する。
提案手法は, トレーニング可能なパラメータを98%少なく抑えながら, 整合性や漸進性などの複数のCTTAシナリオに優れることを確認した。
論文 参考訳(メタデータ) (2024-02-13T18:37:53Z) - AR-TTA: A Simple Method for Real-World Continual Test-Time Adaptation [1.4530711901349282]
本稿では,自律運転のためのデータセット,すなわちCLAD-CとShiFTを用いたテスト時間適応手法の検証を提案する。
現在のテスト時間適応手法は、ドメインシフトの様々な程度を効果的に扱うのに苦労している。
モデル安定性を高めるために、小さなメモリバッファを組み込むことで、確立された自己学習フレームワークを強化する。
論文 参考訳(メタデータ) (2023-09-18T19:34:23Z) - ViDA: Homeostatic Visual Domain Adapter for Continual Test Time Adaptation [48.039156140237615]
目標ドメインの継続的な変更に事前訓練されたモデルを適用するために、連続的なテスト時間適応タスクを提案する。
我々はCTTA用のVisual Domain Adapter (ViDA) を設計し、ドメイン固有知識とドメイン共有知識の両方を明示的に扱う。
提案手法は,CTTAタスクの分類とセグメント化の両方において,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-06-07T11:18:53Z) - IDA: Informed Domain Adaptive Semantic Segmentation [51.12107564372869]
クラスレベルのセグメンテーション性能に基づいてデータを混合する自己学習フレームワークであるDomain Informed Adaptation (IDA) モデルを提案する。
IDAモデルでは、クラスレベルの性能を期待信頼スコア(ECS)によって追跡し、動的スケジュールを用いて異なる領域のデータに対する混合比を決定する。
提案手法は,GTA-Vの都市景観への適応において1.1 mIoU,SynTHIAの都市への適応において0.9 mIoUのマージンで,最先端のUDA-SS法よりも優れる。
論文 参考訳(メタデータ) (2023-03-05T18:16:34Z) - Test-time Adaptation in the Dynamic World with Compound Domain Knowledge
Management [75.86903206636741]
テスト時間適応(TTA)により、モデルは新しい環境に適応し、テスト時間中にパフォーマンスを向上させることができる。
TTAのいくつかの研究は、継続的に変化する環境において、有望な適応性能を示している。
本稿ではまず,複合ドメイン知識管理を用いた堅牢なTTAフレームワークを提案する。
次に、ソースと現在のターゲットドメイン間のドメイン類似性を用いて適応率を変調する新しい正規化を考案する。
論文 参考訳(メタデータ) (2022-12-16T09:02:01Z) - Gradual Test-Time Adaptation by Self-Training and Style Transfer [5.110894308882439]
段階的ドメイン適応とテスト時間適応の自然な関係を示す。
本稿では,自己学習とスタイル伝達に基づく新しい手法を提案する。
CIFAR10C, CIFAR100C, ImageNet-Cベンチマークにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2022-08-16T13:12:19Z) - Amplitude Spectrum Transformation for Open Compound Domain Adaptive
Semantic Segmentation [62.68759523116924]
オープン化合物ドメイン適応(OCDA)は、実用的な適応セットとして現れている。
我々は、新しい特徴空間振幅スペクトル変換(AST)を提案する。
論文 参考訳(メタデータ) (2022-02-09T05:40:34Z) - AdaStereo: An Efficient Domain-Adaptive Stereo Matching Approach [50.855679274530615]
本稿では,AdaStereoというドメイン適応型アプローチを提案する。
我々のモデルは、KITTI、Middlebury、ETH3D、DrivingStereoなど、複数のベンチマークで最先端のクロスドメイン性能を実現している。
提案手法は,様々なドメイン適応設定に対して堅牢であり,迅速な適応アプリケーションシナリオや実環境展開に容易に組み込むことができる。
論文 参考訳(メタデータ) (2021-12-09T15:10:47Z) - Exploiting Diverse Characteristics and Adversarial Ambivalence for
Domain Adaptive Segmentation [20.13548631627542]
新しいドメインにセマンティックセグメンテーションモデルを適用することは重要だが難しい問題だ。
特殊なプログレッシブな敵対的トレーニング機構と新しい自己訓練政策によって強化された条件付き適応フレームワークを提案する。
対象の画像が気象条件によって異なる様々な適応シナリオに対して,本手法を評価する。
論文 参考訳(メタデータ) (2020-12-10T11:50:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。