論文の概要: Molecular Graph Representation Learning via Structural Similarity Information
- arxiv url: http://arxiv.org/abs/2409.08580v1
- Date: Fri, 13 Sep 2024 06:59:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 17:28:47.643498
- Title: Molecular Graph Representation Learning via Structural Similarity Information
- Title(参考訳): 構造類似情報を用いた分子グラフ表現学習
- Authors: Chengyu Yao, Hong Huang, Hang Gao, Fengge Wu, Haiming Chen, Junsuo Zhao,
- Abstract要約: 我々は新しい分子グラフ表現学習法である textbf Structure similarity Motif GNN (MSSM-GNN) を紹介する。
特に,分子間の類似性を定量的に表現するために,グラフカーネルアルゴリズムを利用した特殊設計グラフを提案する。
我々はGNNを用いて分子グラフから特徴表現を学習し、追加の分子表現情報を組み込むことで特性予測の精度を高めることを目的としている。
- 参考スコア(独自算出の注目度): 11.38130169319915
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have been widely employed for feature representation learning in molecular graphs. Therefore, it is crucial to enhance the expressiveness of feature representation to ensure the effectiveness of GNNs. However, a significant portion of current research primarily focuses on the structural features within individual molecules, often overlooking the structural similarity between molecules, which is a crucial aspect encapsulating rich information on the relationship between molecular properties and structural characteristics. Thus, these approaches fail to capture the rich semantic information at the molecular structure level. To bridge this gap, we introduce the \textbf{Molecular Structural Similarity Motif GNN (MSSM-GNN)}, a novel molecular graph representation learning method that can capture structural similarity information among molecules from a global perspective. In particular, we propose a specially designed graph that leverages graph kernel algorithms to represent the similarity between molecules quantitatively. Subsequently, we employ GNNs to learn feature representations from molecular graphs, aiming to enhance the accuracy of property prediction by incorporating additional molecular representation information. Finally, through a series of experiments conducted on both small-scale and large-scale molecular datasets, we demonstrate that our model consistently outperforms eleven state-of-the-art baselines. The codes are available at https://github.com/yaoyao-yaoyao-cell/MSSM-GNN.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は分子グラフにおける特徴表現学習に広く用いられている。
したがって,GNNの有効性を確保するため,特徴表現の表現性を高めることが重要である。
しかしながら、現在の研究の大部分は個々の分子の構造的特徴に重点を置いており、しばしば分子間の構造的類似性を見落としている。
したがって、これらのアプローチは分子構造レベルでリッチなセマンティック情報を捕捉することができない。
このギャップを埋めるために、グローバルな視点から分子間の構造的類似情報を捉える新しい分子グラフ表現学習法である「textbf{Molecular Structure similarity Motif GNN」(MSSM-GNN)を導入する。
特に,分子間の類似性を定量的に表現するために,グラフカーネルアルゴリズムを利用した特殊設計グラフを提案する。
その後、分子グラフから特徴表現を学習するためにGNNを用い、追加の分子表現情報を組み込んで特性予測の精度を高めることを目的とした。
最後に、小規模と大規模の両方の分子データセットで実施した一連の実験により、我々のモデルが一貫して11の最先端のベースラインを上回っていることが実証された。
コードはhttps://github.com/yaoyao-yaoyao-cell/MSSM-GNNで公開されている。
関連論文リスト
- Molecular Property Prediction Based on Graph Structure Learning [29.516479802217205]
我々はGSL-MPPと呼ばれるグラフ構造学習(GSL)に基づくMPPアプローチを提案する。
具体的には、まず、分子グラフ上にグラフニューラルネットワーク(GNN)を適用し、分子表現を抽出する。
分子指紋を用いて分子類似性グラフ(MSG)を構築する。
論文 参考訳(メタデータ) (2023-12-28T06:45:13Z) - CTAGE: Curvature-Based Topology-Aware Graph Embedding for Learning
Molecular Representations [11.12640831521393]
分子グラフデータから構造的洞察を抽出するために,$k$hopの離散リッチ曲率を用いたCTAGEの埋め込み手法を提案する。
その結果,ノード曲率の導入は,現在のグラフニューラルネットワークフレームワークの性能を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-07-25T06:13:01Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
本稿では,分子の2レベル構造を考慮した新しいGODE法を提案する。
異なるグラフ構造上で2つのグラフニューラルネットワーク(GNN)を事前訓練し、対照的な学習と組み合わせることで、GODEは分子構造を対応する知識グラフサブ構造と融合させる。
11の化学特性タスクを微調整した場合、我々のモデルは既存のベンチマークよりも優れており、分類タスクの平均ROC-AUCアップリフトは13.8%、回帰タスクの平均RMSE/MAEエンハンスメントは35.1%である。
論文 参考訳(メタデータ) (2023-06-02T15:49:45Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
我々は、原子とサブグラフを意識したバイラテラルアグリゲーション(ASBA)と呼ばれる分子表現学習の新しいモデルを導入する。
ASBAは、両方の種類の情報を統合することで、以前の原子単位とサブグラフ単位のモデルの限界に対処する。
本手法は,分子特性予測のための表現をより包括的に学習する方法を提供する。
論文 参考訳(メタデータ) (2023-05-22T00:56:00Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
分子表現学習のための「プリトレイン,プロンプト,ファインチューン」という新しいパラダイム,分子連続プロンプトチューニング(MolCPT)を提案する。
MolCPTは、事前訓練されたモデルを使用して、スタンドアロンの入力を表現的なプロンプトに投影するモチーフプロンプト関数を定義する。
いくつかのベンチマークデータセットの実験により、MollCPTは分子特性予測のために学習済みのGNNを効率的に一般化することが示された。
論文 参考訳(メタデータ) (2022-12-20T19:32:30Z) - HiGNN: Hierarchical Informative Graph Neural Networks for Molecular
Property Prediction Equipped with Feature-Wise Attention [5.735627221409312]
分子特性を予測するための階層型情報グラフニューラルネットワークフレームワーク(HiGNN)を提案する。
実験により、HiGNNは、多くの挑戦的な薬物発見関連ベンチマークデータセットに対して最先端の予測性能を達成することが示された。
論文 参考訳(メタデータ) (2022-08-30T05:16:15Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
分子表現学習のための新しいフレームワークGROVERを提案する。
GROVERは、分子の豊富な構造的および意味的な情報を、巨大な未標識分子データから学習することができる。
分子表現学習において、最大のGNNであり、最大のトレーニングデータセットである、1000万個の未標識分子に1億のパラメータを持つGROVERを事前訓練します。
論文 参考訳(メタデータ) (2020-06-18T08:37:04Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
マルチビューグラフニューラルネットワーク(MV-GNN)を提案する。
MV-GNNでは,学習過程を安定させるために,自己注意型読み出しコンポーネントと不一致損失を導入する。
我々は、相互依存型メッセージパッシング方式を提案することにより、MV-GNNの表現力をさらに強化する。
論文 参考訳(メタデータ) (2020-05-17T04:46:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。