Online Learning Of Expanding Graphs
- URL: http://arxiv.org/abs/2409.08660v1
- Date: Fri, 13 Sep 2024 09:20:42 GMT
- Title: Online Learning Of Expanding Graphs
- Authors: Samuel Rey, Bishwadeep Das, Elvin Isufi,
- Abstract summary: This paper addresses the problem of online network inference for expanding graphs from a stream of signals.
We introduce a strategy that enables different types of updates for nodes that just joined the network and for previously existing nodes.
- Score: 14.952056744888916
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the problem of online network topology inference for expanding graphs from a stream of spatiotemporal signals. Online algorithms for dynamic graph learning are crucial in delay-sensitive applications or when changes in topology occur rapidly. While existing works focus on inferring the connectivity within a fixed set of nodes, in practice, the graph can grow as new nodes join the network. This poses additional challenges like modeling temporal dynamics involving signals and graphs of different sizes. This growth also increases the computational complexity of the learning process, which may become prohibitive. To the best of our knowledge, this is the first work to tackle this setting. We propose a general online algorithm based on projected proximal gradient descent that accounts for the increasing graph size at each iteration. Recursively updating the sample covariance matrix is a key aspect of our approach. We introduce a strategy that enables different types of updates for nodes that just joined the network and for previously existing nodes. To provide further insights into the proposed method, we specialize it in Gaussian Markov random field settings, where we analyze the computational complexity and characterize the dynamic cumulative regret. Finally, we demonstrate the effectiveness of the proposed approach using both controlled experiments and real-world datasets from epidemic and financial networks.
Related papers
- Layer-wise training for self-supervised learning on graphs [0.0]
End-to-end training of graph neural networks (GNN) on large graphs presents several memory and computational challenges.
We propose Layer-wise Regularized Graph Infomax, an algorithm to train GNNs layer by layer in a self-supervised manner.
arXiv Detail & Related papers (2023-09-04T10:23:39Z) - Learning to Identify Graphs from Node Trajectories in Multi-Robot
Networks [15.36505600407192]
We propose a learning-based approach that efficiently uncovers graph topologies with global convergence guarantees.
We demonstrate the effectiveness of our approach in identifying graphs in multi-robot formation and flocking tasks.
arXiv Detail & Related papers (2023-07-10T07:09:12Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
We propose a novel approach for dynamic network representation learning based on Temporal Graph Network.
For evaluation, we provide a benchmark pipeline for the evaluation of temporal network embeddings.
We show the applicability and superior performance of our model in the real-world downstream graph machine learning task provided by one of the top European banks.
arXiv Detail & Related papers (2021-08-19T15:39:52Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
Graph embedding is a way to transform and encode the data structure in high dimensional and non-Euclidean feature space.
CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space.
Our approach achieves or matches the state-of-the-art performance in four graph learning tasks.
arXiv Detail & Related papers (2020-10-25T22:39:31Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - Graph Ordering: Towards the Optimal by Learning [69.72656588714155]
Graph representation learning has achieved a remarkable success in many graph-based applications, such as node classification, prediction, and community detection.
However, for some kind of graph applications, such as graph compression and edge partition, it is very hard to reduce them to some graph representation learning tasks.
In this paper, we propose to attack the graph ordering problem behind such applications by a novel learning approach.
arXiv Detail & Related papers (2020-01-18T09:14:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.