論文の概要: NeSHFS: Neighborhood Search with Heuristic-based Feature Selection for Click-Through Rate Prediction
- arxiv url: http://arxiv.org/abs/2409.08703v1
- Date: Fri, 13 Sep 2024 10:43:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 16:58:47.422259
- Title: NeSHFS: Neighborhood Search with Heuristic-based Feature Selection for Click-Through Rate Prediction
- Title(参考訳): NeSHFS:クリックスルーレート予測のためのヒューリスティックな特徴選択による周辺検索
- Authors: Dogukan Aksu, Ismail Hakki Toroslu, Hasan Davulcu,
- Abstract要約: クリックスルーレート(CTR)予測は、オンライン広告や広告推薦システムにおいて重要な役割を果たす。
我々は、CTR予測性能を向上させるために、Neighborhood Search with Heuristic-based Feature Selection (NeSHFS)というCTRアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 1.3805049652130312
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Click-through-rate (CTR) prediction plays an important role in online advertising and ad recommender systems. In the past decade, maximizing CTR has been the main focus of model development and solution creation. Therefore, researchers and practitioners have proposed various models and solutions to enhance the effectiveness of CTR prediction. Most of the existing literature focuses on capturing either implicit or explicit feature interactions. Although implicit interactions are successfully captured in some studies, explicit interactions present a challenge for achieving high CTR by extracting both low-order and high-order feature interactions. Unnecessary and irrelevant features may cause high computational time and low prediction performance. Furthermore, certain features may perform well with specific predictive models while underperforming with others. Also, feature distribution may fluctuate due to traffic variations. Most importantly, in live production environments, resources are limited, and the time for inference is just as crucial as training time. Because of all these reasons, feature selection is one of the most important factors in enhancing CTR prediction model performance. Simple filter-based feature selection algorithms do not perform well and they are not sufficient. An effective and efficient feature selection algorithm is needed to consistently filter the most useful features during live CTR prediction process. In this paper, we propose a heuristic algorithm named Neighborhood Search with Heuristic-based Feature Selection (NeSHFS) to enhance CTR prediction performance while reducing dimensionality and training time costs. We conduct comprehensive experiments on three public datasets to validate the efficiency and effectiveness of our proposed solution.
- Abstract(参考訳): クリックスルーレート(CTR)予測は、オンライン広告や広告推薦システムにおいて重要な役割を果たす。
過去10年間、CTRの最大化は、モデル開発とソリューション作成の主な焦点であった。
そのため、研究者や実践者は、CTR予測の有効性を高めるための様々なモデルと解決策を提案している。
既存の文献のほとんどは、暗黙的または明示的な特徴の相互作用を捉えることに重点を置いている。
暗黙的な相互作用はいくつかの研究でうまく捉えられているが、明示的な相互作用は低次と高次の両方の特徴的相互作用を抽出することによって高いCTRを達成するための課題を示す。
不要かつ無関係な特徴は、高い計算時間と低い予測性能を引き起こす可能性がある。
さらに、特定の機能は特定の予測モデルでうまく機能するが、他の機能では性能が劣る。
また、交通量の変化により特徴分布が変動することがある。
最も重要なことは、実運用環境ではリソースが限られており、推論の時間はトレーニング時間と同じくらい重要です。
これらの理由により、特徴選択はCTR予測モデルの性能を向上させる上で最も重要な要因の1つである。
単純なフィルタベースの特徴選択アルゴリズムは、うまく機能せず、不十分である。
ライブCTR予測プロセスにおいて、最も有用な特徴を一貫してフィルタするために、効率的かつ効率的な特徴選択アルゴリズムが必要である。
本論文では,CTR予測性能を向上し,次元とトレーニング時間コストの低減を図るため,NeSHFS (Neighborhood Search with Heuristic-based Feature Selection) というヒューリスティックアルゴリズムを提案する。
提案手法の有効性と有効性を検証するために,3つの公開データセットに関する総合的な実験を行った。
関連論文リスト
- Multi-granularity Interest Retrieval and Refinement Network for Long-Term User Behavior Modeling in CTR Prediction [68.90783662117936]
クリックスルーレート(CTR)の予測は、オンラインパーソナライズプラットフォームにとって不可欠である。
近年の進歩は、リッチなユーザの振る舞いをモデル化することで、CTR予測の性能を大幅に改善できることを示している。
マルチグラニュラリティ興味検索ネットワーク(MIRRN)を提案する。
論文 参考訳(メタデータ) (2024-11-22T15:29:05Z) - LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
大規模言語モデル(LLM)は、データサイエンスの標準ツールに匹敵するパフォーマンスで、最も予測可能な機能を選択することができる。
以上の結果から,LSMはトレーニングに最適な機能を選択するだけでなく,そもそもどの機能を収集すべきかを判断する上でも有用である可能性が示唆された。
論文 参考訳(メタデータ) (2024-07-02T22:23:40Z) - Helen: Optimizing CTR Prediction Models with Frequency-wise Hessian
Eigenvalue Regularization [22.964109377128523]
CTR(Click-Through Rate)予測は、オンライン広告とレコメンデーションシナリオにおいて最も重要である。
近年のCTR予測モデルの普及にもかかわらず、性能の改善は限られている。
論文 参考訳(メタデータ) (2024-02-23T15:00:46Z) - MAP: A Model-agnostic Pretraining Framework for Click-through Rate
Prediction [39.48740397029264]
本稿では,多分野分類データに特徴的破損と回復を適用したMAP(Model-Agnostic Pretraining)フレームワークを提案する。
マスク付き特徴予測(RFD)と代替特徴検出(RFD)の2つの実用的なアルゴリズムを導出する。
論文 参考訳(メタデータ) (2023-08-03T12:55:55Z) - DELTA: Dynamic Embedding Learning with Truncated Conscious Attention for
CTR Prediction [61.68415731896613]
CTR(Click-Through Rate)予測は、製品とコンテンツの推奨において重要なタスクである。
本稿では,CTR予測のための動的埋め込み学習を実現するモデルを提案する。
論文 参考訳(メタデータ) (2023-05-03T12:34:45Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
クリックスルー率(CTR)予測は、ユーザーが商品をクリックする確率を予測することを目的としており、リコメンデーションシステムにおいてますます重要になっている。
近年,ユーザの行動からユーザの興味を自動的に抽出する深層学習モデルが大きな成功を収めている。
そこで我々は,メタラッパー(Meta-Wrapper)と呼ばれるラッパー手法の枠組みに基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2022-06-28T03:28:15Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
本稿では,CSUFS (Compactness Score) と呼ばれる高速な教師なし特徴選択手法を提案する。
提案アルゴリズムは既存のアルゴリズムよりも正確で効率的である。
論文 参考訳(メタデータ) (2022-01-31T13:01:37Z) - Understanding Interlocking Dynamics of Cooperative Rationalization [90.6863969334526]
選択的合理化(Selective rationalization)は、ニューラルネットワークの出力を予測するのに十分な入力の小さなサブセットを見つけることによって、複雑なニューラルネットワークの予測を説明する。
このような合理化パラダイムでは,モデルインターロックという大きな問題が浮かび上がっている。
A2Rと呼ばれる新しい合理化フレームワークを提案し、アーキテクチャに第3のコンポーネントを導入し、選択とは対照的にソフトアテンションによって駆動される予測器を提案する。
論文 参考訳(メタデータ) (2021-10-26T17:39:18Z) - Memorize, Factorize, or be Na\"ive: Learning Optimal Feature Interaction
Methods for CTR Prediction [29.343267933348372]
本稿では,各機能間相互作用に最も適したモデリング手法を求めるOPtInterというフレームワークを提案する。
実験の結果,OptInterは最先端のベースライン深部CTRモデルを最大2.21%改善することがわかった。
論文 参考訳(メタデータ) (2021-08-03T03:03:34Z) - Looking at CTR Prediction Again: Is Attention All You Need? [4.873362301533825]
クリックスルー率(CTR)予測は、ウェブ検索、レコメンデーションシステム、オンライン広告表示における重要な問題です。
経済学において離散選択モデルを用いてCTR予測問題を再定義し,自己認識機構に基づく汎用ニューラルネットワークフレームワークを提案する。
既存のCTR予測モデルのほとんどは、提案された一般的なフレームワークと一致することが判明した。
論文 参考訳(メタデータ) (2021-05-12T10:27:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。