論文の概要: Towards Modified Condition/Decision Coverage of Rust
- arxiv url: http://arxiv.org/abs/2409.08708v1
- Date: Fri, 13 Sep 2024 10:53:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 16:58:47.413428
- Title: Towards Modified Condition/Decision Coverage of Rust
- Title(参考訳): Rustの条件/決定カバレッジの修正に向けて
- Authors: Wanja Zaeske, Pietro Albini, Florian Gilcher, Umut Durak,
- Abstract要約: MC/DC (Modified Condition/Decision Coverage) は、航空業界で最も高いソフトウェア保証レベルである。
Rustプログラミング言語のいくつかの中心的な機能は、さらなる明確化を必要としている。
本稿では,Rust MC/DCツールの実装について報告する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Testing is an essential tool to assure software, especially so in safety-critical applications. To quantify how thoroughly a software item has been tested, a test coverage metric is required. Maybe the strictest such metric known in the safety critical systems is Modified Condition/Decision Coverage (MC/DC), which DO-178C prescribes for the highest software assurance level in aviation. In the past, ambiguities in the interpretation of MC/DC have been resolved already, i. e. in CAST-10. However, some central features of the Rust programming language necessitate further clarification. This work investigates aforementioned features, in particular pattern matching, providing a consistent view on how to apply MC/DC to Rust. Hence, this paper informs the implementation of Rust MC/DC tools, paving the road towards Rust in high-assurance applications.
- Abstract(参考訳): テストは、特にセーフティクリティカルなアプリケーションにおいて、ソフトウェアを保証する上で不可欠なツールです。
ソフトウェア項目がどの程度徹底的にテストされたかの定量化には、テストカバレッジメトリクスが必要である。
安全クリティカルシステムで知られている最も厳密な測定基準は、修正条件/決定カバレッジ(MC/DC)であり、DO-178Cは航空におけるソフトウェア保証の最高レベルを規定している。
過去には、MC/DCの解釈の曖昧さは既に解決されている。
E
CAST-10で。
しかしながら、Rustプログラミング言語のいくつかの中心的な特徴は、さらなる明確化を必要としている。
本稿では、前述の機能、特にパターンマッチングを調査し、RustにMC/DCを適用する方法について一貫したビューを提供する。
そこで本稿では,Rust MC/DCツールの実装について報告する。
関連論文リスト
- Automated Proof Generation for Rust Code via Self-Evolution [69.25795662658356]
私たちは、Rustコードの自動証明生成を可能にする、人間による証明の欠如を克服する新しいフレームワークであるSAFEを紹介します。
GPT-4oに比べて効率と精度が優れていた。
この進歩により性能が大幅に向上し、人間の専門家によるベンチマークで70.50%の精度が達成された。
論文 参考訳(メタデータ) (2024-10-21T08:15:45Z) - NExT: Teaching Large Language Models to Reason about Code Execution [50.93581376646064]
大規模言語モデル(LLM)のコードは通常、プログラムの表面テキスト形式に基づいて訓練される。
NExTは,プログラムの実行トレースを検査し,実行時の動作を判断する手法である。
論文 参考訳(メタデータ) (2024-04-23T01:46:32Z) - A Mixed-Methods Study on the Implications of Unsafe Rust for Interoperation, Encapsulation, and Tooling [2.2463451968497425]
Rust開発者は、マルチ言語アプリケーション内の健全性を保証するための検証ツールが必要である。
開発者は、外部関数呼び出しの理由、現在使用しているツールの制限、安全でないコードを使用する動機、そしてそれをカプセル化する理由について調査する。
論文 参考訳(メタデータ) (2024-04-02T18:36:21Z) - Adaptive Hierarchical Certification for Segmentation using Randomized Smoothing [87.48628403354351]
機械学習の認証は、特定の条件下では、敵対的なサンプルが特定の範囲内でモデルを回避できないことを証明している。
セグメンテーションの一般的な認証方法は、平らな粒度のクラスを使い、モデルの不確実性による高い断続率をもたらす。
本稿では,複数レベルの階層内で画素を認証し,不安定なコンポーネントに対して粗いレベルに適応的に認証を緩和する,新しい,より実用的な設定を提案する。
論文 参考訳(メタデータ) (2024-02-13T11:59:43Z) - Towards a Transpiler for C/C++ to Safer Rust [0.10993800728351737]
RustはMozillaが開発したプログラミング言語で、パフォーマンスと安全性に重点を置いている。
既存のC++コードベースをRustに変換する方法も注目されている。
論文 参考訳(メタデータ) (2024-01-16T10:35:59Z) - Fake Alignment: Are LLMs Really Aligned Well? [91.26543768665778]
本研究では,複数質問とオープンエンド質問の相違点について検討した。
ジェイルブレイク攻撃パターンの研究にインスパイアされた我々は、これが不一致の一般化によって引き起こされたと論じている。
論文 参考訳(メタデータ) (2023-11-10T08:01:23Z) - Fast Summary-based Whole-program Analysis to Identify Unsafe Memory Accesses in Rust [23.0568924498396]
Rustは40年以上にわたって低レベルのソフトウェアに悩まされてきたメモリ安全性問題を解決する最も有望なシステムプログラミング言語の1つである。
アンセーフなRustコードと直接リンクされたアンセーフな外部ライブラリは、メモリ安全違反自体を導入するだけでなく、セーフなRustと同じモノリシックなアドレス空間で実行されるプログラム全体を侵害する可能性がある。
我々は、安全でないヒープの割り当てと、それらの安全でないヒープオブジェクトへのメモリアクセスの両方を識別するためのプログラム全体をプロトタイプ化した。
論文 参考訳(メタデータ) (2023-10-16T11:34:21Z) - Fixing Rust Compilation Errors using LLMs [2.1781086368581932]
Rustプログラミング言語は、C/C++のような従来の安全でない代替言語よりも、低レベルのシステムプログラミング言語に実行可能な選択肢として、自らを確立している。
本稿では,Large Language Models(LLMs)の創発的機能を活用し,Rustコンパイルエラーの修正を自動的に提案するRustAssistantというツールを提案する。
RustAssistantは、人気のあるオープンソースRustリポジトリの実際のコンパイルエラーに対して、約74%の驚くべきピーク精度を達成することができる。
論文 参考訳(メタデータ) (2023-08-09T18:30:27Z) - Is unsafe an Achilles' Heel? A Comprehensive Study of Safety
Requirements in Unsafe Rust Programming [4.981203415693332]
Rustは、効率性とメモリ安全性を重視した、新しく、強く型付けされたプログラミング言語である。
標準ライブラリの現在の安全でないAPIドキュメントには、一貫性や不十分さなど、さまざまなバリエーションがあった。
Rustのセキュリティを強化するために、ユーザに従うべき安全要件の体系的な記述をリストアップするために、安全でないAPIドキュメントを提案する。
論文 参考訳(メタデータ) (2023-08-09T08:16:10Z) - Safe Deep Reinforcement Learning by Verifying Task-Level Properties [84.64203221849648]
コスト関数は、安全深層強化学習(DRL)において一般的に用いられる。
このコストは通常、国家空間における政策決定のリスクの定量化が難しいため、指標関数として符号化される。
本稿では,ドメイン知識を用いて,そのような状態に近接するリスクを定量化するための代替手法について検討する。
論文 参考訳(メタデータ) (2023-02-20T15:24:06Z) - Certified Interpretability Robustness for Class Activation Mapping [77.58769591550225]
本稿では,解釈可能性マップのためのCORGI(Certifiable prOvable Robustness Guarantees)を提案する。
CORGIは入力画像を取り込み、そのCAM解釈可能性マップのロバスト性に対する証明可能な下限を与えるアルゴリズムである。
交通標識データを用いたケーススタディによるCORGIの有効性を示す。
論文 参考訳(メタデータ) (2023-01-26T18:58:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。