Bridging Dynamic Factor Models and Neural Controlled Differential Equations for Nowcasting GDP
- URL: http://arxiv.org/abs/2409.08732v1
- Date: Fri, 13 Sep 2024 11:33:57 GMT
- Title: Bridging Dynamic Factor Models and Neural Controlled Differential Equations for Nowcasting GDP
- Authors: Seonkyu Lim, Jeongwhan Choi, Noseong Park, Sang-Ha Yoon, ShinHyuck Kang, Young-Min Kim, Hyunjoong Kang,
- Abstract summary: We introduce NCDENow, a novel GDP nowcasting framework that integrates neural controlled differential equations (NCDEs) with dynamic factor models (DFMs)
We evaluate NCDENow against 6 baselines on 2 real-world GDP datasets from South Korea and the United Kingdom.
- Score: 22.58246330019538
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gross domestic product (GDP) nowcasting is crucial for policy-making as GDP growth is a key indicator of economic conditions. Dynamic factor models (DFMs) have been widely adopted by government agencies for GDP nowcasting due to their ability to handle irregular or missing macroeconomic indicators and their interpretability. However, DFMs face two main challenges: i) the lack of capturing economic uncertainties such as sudden recessions or booms, and ii) the limitation of capturing irregular dynamics from mixed-frequency data. To address these challenges, we introduce NCDENow, a novel GDP nowcasting framework that integrates neural controlled differential equations (NCDEs) with DFMs. This integration effectively handles the dynamics of irregular time series. NCDENow consists of 3 main modules: i) factor extraction leveraging DFM, ii) dynamic modeling using NCDE, and iii) GDP growth prediction through regression. We evaluate NCDENow against 6 baselines on 2 real-world GDP datasets from South Korea and the United Kingdom, demonstrating its enhanced predictive capability. Our empirical results favor our method, highlighting the significant potential of integrating NCDE into nowcasting models. Our code and dataset are available at https://github.com/sklim84/NCDENow_CIKM2024.
Related papers
- Generating density nowcasts for U.S. GDP growth with deep learning: Bayes by Backprop and Monte Carlo dropout [0.0]
We show that artificial neural networks (ANNs) can outperform the dynamic factor model (DFM) in terms of the accuracy of GDP nowcasts.
We adapt two different deep learning algorithms that enable ANNs to generate density nowcasts for U.S. GDP growth.
The results indicate that both Bayes by Backprop and Monte Carlo dropout can effectively augment the scope and functionality of ANNs.
arXiv Detail & Related papers (2024-05-24T14:06:08Z) - Nowcasting Madagascar's real GDP using machine learning algorithms [0.0]
We investigate the predictive power of different machine learning algorithms to nowcast Madagascar's gross domestic product (GDP)
We trained popular regression models, including linear regularized regression (Ridge, Lasso, Elastic-net), dimensionality reduction model (principal component regression), k-nearest neighbors algorithm (k-NN regression)
We measured the nowcast accuracy of each model by calculating the root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE)
arXiv Detail & Related papers (2023-12-24T20:40:54Z) - Human Trajectory Forecasting with Explainable Behavioral Uncertainty [63.62824628085961]
Human trajectory forecasting helps to understand and predict human behaviors, enabling applications from social robots to self-driving cars.
Model-free methods offer superior prediction accuracy but lack explainability, while model-based methods provide explainability but cannot predict well.
We show that BNSP-SFM achieves up to a 50% improvement in prediction accuracy, compared with 11 state-of-the-art methods.
arXiv Detail & Related papers (2023-07-04T16:45:21Z) - Dynamic Term Structure Models with Nonlinearities using Gaussian
Processes [0.0]
We propose a generalized modelling setup for Gaussian DTSMs which allows for unspanned nonlinear associations between the two.
We construct a custom sequential Monte Carlo estimation and forecasting scheme where we introduce Gaussian Process priors to model nonlinearities.
Unlike for real economic activity, in case of core inflation we find that, compared to linear models, application of nonlinear models leads to statistically significant gains in economic value across considered maturities.
arXiv Detail & Related papers (2023-05-18T14:24:17Z) - Bayesian Neural Networks for Macroeconomic Analysis [0.0]
We develop Bayesian neural networks (BNNs) that are well-suited for handling datasets commonly used for macroeconomic analysis in policy institutions.
Our approach avoids extensive specification searches through a novel mixture specification for the activation function.
We show that our BNNs produce precise density forecasts, typically better than those from other machine learning methods.
arXiv Detail & Related papers (2022-11-09T09:10:57Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) is a novel end-to-end network that performs fusion on pairwise modality representations.
Model takes two bimodal pairs as input due to known information imbalance among modalities.
arXiv Detail & Related papers (2021-07-28T23:33:42Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Quaternion Factorization Machines: A Lightweight Solution to Intricate
Feature Interaction Modelling [76.89779231460193]
factorization machine (FM) is capable of automatically learning high-order interactions among features to make predictions without the need for manual feature engineering.
We propose the quaternion factorization machine (QFM) and quaternion neural factorization machine (QNFM) for sparse predictive analytics.
arXiv Detail & Related papers (2021-04-05T00:02:36Z) - Deep Dynamic Factor Models [0.5156484100374059]
A novel deep neural network framework -- that we refer to as Deep Dynamic Factor Model (D$2$FM) -- is able to encode the information available.
By design, the latent states of the model can still be interpreted as in a standard factor model.
arXiv Detail & Related papers (2020-07-23T09:54:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.