Adaptive Sampling for Continuous Group Equivariant Neural Networks
- URL: http://arxiv.org/abs/2409.08741v1
- Date: Fri, 13 Sep 2024 11:50:09 GMT
- Title: Adaptive Sampling for Continuous Group Equivariant Neural Networks
- Authors: Berfin Inal, Gabriele Cesa,
- Abstract summary: We introduce an adaptive sampling approach that dynamically adjusts the sampling process to the symmetries in the data.
Our findings demonstrate improved model performance, and a marginal increase in memory efficiency.
- Score: 5.141137421503899
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Steerable networks, which process data with intrinsic symmetries, often use Fourier-based nonlinearities that require sampling from the entire group, leading to a need for discretization in continuous groups. As the number of samples increases, both performance and equivariance improve, yet this also leads to higher computational costs. To address this, we introduce an adaptive sampling approach that dynamically adjusts the sampling process to the symmetries in the data, reducing the number of required group samples and lowering the computational demands. We explore various implementations and their effects on model performance, equivariance, and computational efficiency. Our findings demonstrate improved model performance, and a marginal increase in memory efficiency.
Related papers
- Score-based Generative Models with Adaptive Momentum [40.84399531998246]
We propose an adaptive momentum sampling method to accelerate the transforming process.
We show that our method can produce more faithful images/graphs in small sampling steps with 2 to 5 times speed up.
arXiv Detail & Related papers (2024-05-22T15:20:27Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - DYNAMITE: Dynamic Interplay of Mini-Batch Size and Aggregation Frequency
for Federated Learning with Static and Streaming Dataset [23.11152686493894]
Federated Learning (FL) is a distributed learning paradigm that can coordinate heterogeneous edge devices to perform model training without sharing private data.
This paper introduces novel analytical models and optimization algorithms that leverage the interplay between batch size and aggregation frequency to navigate the trade-offs among convergence, cost, and completion time for dynamic FL training.
arXiv Detail & Related papers (2023-10-20T08:36:12Z) - Tunable Convolutions with Parametric Multi-Loss Optimization [5.658123802733283]
Behavior of neural networks is irremediably determined by the specific loss and data used during training.
It is often desirable to tune the model at inference time based on external factors such as preferences of the user or dynamic characteristics of the data.
This is especially important to balance the perception-distortion trade-off of ill-posed image-to-image translation tasks.
arXiv Detail & Related papers (2023-04-03T11:36:10Z) - ClusterQ: Semantic Feature Distribution Alignment for Data-Free
Quantization [111.12063632743013]
We propose a new and effective data-free quantization method termed ClusterQ.
To obtain high inter-class separability of semantic features, we cluster and align the feature distribution statistics.
We also incorporate the intra-class variance to solve class-wise mode collapse.
arXiv Detail & Related papers (2022-04-30T06:58:56Z) - Adaptive Client Sampling in Federated Learning via Online Learning with
Bandit Feedback [36.05851452151107]
federated learning (FL) systems need to sample a subset of clients that are involved in each round of training.
Despite its importance, there is limited work on how to sample clients effectively.
We show how our sampling method can improve the convergence speed of optimization algorithms.
arXiv Detail & Related papers (2021-12-28T23:50:52Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - Normalized Convolution Upsampling for Refined Optical Flow Estimation [23.652615797842085]
Normalized Convolution UPsampler (NCUP) is an efficient joint upsampling approach to produce the full-resolution flow during the training of optical flow CNNs.
Our proposed approach formulates the upsampling task as a sparse problem and employs the normalized convolutional neural networks to solve it.
We achieve state-of-the-art results on Sintel benchmark with 6% error reduction, and on-par on the KITTI dataset, while having 7.5% fewer parameters.
arXiv Detail & Related papers (2021-02-13T18:34:03Z) - Optimal Importance Sampling for Federated Learning [57.14673504239551]
Federated learning involves a mixture of centralized and decentralized processing tasks.
The sampling of both agents and data is generally uniform; however, in this work we consider non-uniform sampling.
We derive optimal importance sampling strategies for both agent and data selection and show that non-uniform sampling without replacement improves the performance of the original FedAvg algorithm.
arXiv Detail & Related papers (2020-10-26T14:15:33Z) - Slice Sampling for General Completely Random Measures [74.24975039689893]
We present a novel Markov chain Monte Carlo algorithm for posterior inference that adaptively sets the truncation level using auxiliary slice variables.
The efficacy of the proposed algorithm is evaluated on several popular nonparametric models.
arXiv Detail & Related papers (2020-06-24T17:53:53Z) - Bandit Samplers for Training Graph Neural Networks [63.17765191700203]
Several sampling algorithms with variance reduction have been proposed for accelerating the training of Graph Convolution Networks (GCNs)
These sampling algorithms are not applicable to more general graph neural networks (GNNs) where the message aggregator contains learned weights rather than fixed weights, such as Graph Attention Networks (GAT)
arXiv Detail & Related papers (2020-06-10T12:48:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.