Neural Flow Samplers with Shortcut Models
- URL: http://arxiv.org/abs/2502.07337v1
- Date: Tue, 11 Feb 2025 07:55:41 GMT
- Title: Neural Flow Samplers with Shortcut Models
- Authors: Wuhao Chen, Zijing Ou, Yingzhen Li,
- Abstract summary: Flow-based samplers generate samples by learning a velocity field that satisfies the continuity equation.
While importance sampling provides an approximation, it suffers from high variance.
- Score: 19.81513273510523
- License:
- Abstract: Sampling from unnormalized densities is a fundamental task across various domains. Flow-based samplers generate samples by learning a velocity field that satisfies the continuity equation, but this requires estimating the intractable time derivative of the partition function. While importance sampling provides an approximation, it suffers from high variance. To mitigate this, we introduce a velocity-driven Sequential Monte Carlo method combined with control variates to reduce variance. Additionally, we incorporate a shortcut model to improve efficiency by minimizing the number of sampling steps. Empirical results on both synthetic datasets and $n$-body system targets validate the effectiveness of our approach.
Related papers
- Dimension-free Score Matching and Time Bootstrapping for Diffusion Models [11.743167854433306]
Diffusion models generate samples by estimating the score function of the target distribution at various noise levels.
In this work, we establish the first (nearly) dimension-free sample bounds complexity for learning these score functions.
A key aspect of our analysis is the use of a single function approximator to jointly estimate scores across noise levels.
arXiv Detail & Related papers (2025-02-14T18:32:22Z) - Self-Refining Diffusion Samplers: Enabling Parallelization via Parareal Iterations [53.180374639531145]
Self-Refining Diffusion Samplers (SRDS) retain sample quality and can improve latency at the cost of additional parallel compute.
We take inspiration from the Parareal algorithm, a popular numerical method for parallel-in-time integration of differential equations.
arXiv Detail & Related papers (2024-12-11T11:08:09Z) - A Simple Early Exiting Framework for Accelerated Sampling in Diffusion Models [14.859580045688487]
A practical bottleneck of diffusion models is their sampling speed.
We propose a novel framework capable of adaptively allocating compute required for the score estimation.
We show that our method could significantly improve the sampling throughput of the diffusion models without compromising image quality.
arXiv Detail & Related papers (2024-08-12T05:33:45Z) - Score-based Generative Models with Adaptive Momentum [40.84399531998246]
We propose an adaptive momentum sampling method to accelerate the transforming process.
We show that our method can produce more faithful images/graphs in small sampling steps with 2 to 5 times speed up.
arXiv Detail & Related papers (2024-05-22T15:20:27Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Liouville Flow Importance Sampler [2.3603292593876324]
We present the Liouville Flow Importance Sampler (LFIS), an innovative flow-based model for generating samples from unnormalized density functions.
LFIS learns a time-dependent velocity field that deterministically transports samples from a simple initial distribution to a complex target distribution.
We demonstrate the effectiveness of LFIS through its application to a range of benchmark problems, on many of which LFIS achieved state-of-the-art performance.
arXiv Detail & Related papers (2024-05-03T16:44:31Z) - Diffusion Generative Flow Samplers: Improving learning signals through
partial trajectory optimization [87.21285093582446]
Diffusion Generative Flow Samplers (DGFS) is a sampling-based framework where the learning process can be tractably broken down into short partial trajectory segments.
Our method takes inspiration from the theory developed for generative flow networks (GFlowNets)
arXiv Detail & Related papers (2023-10-04T09:39:05Z) - Boosting Fast and High-Quality Speech Synthesis with Linear Diffusion [85.54515118077825]
This paper proposes a linear diffusion model (LinDiff) based on an ordinary differential equation to simultaneously reach fast inference and high sample quality.
To reduce computational complexity, LinDiff employs a patch-based processing approach that partitions the input signal into small patches.
Our model can synthesize speech of a quality comparable to that of autoregressive models with faster synthesis speed.
arXiv Detail & Related papers (2023-06-09T07:02:43Z) - Entropy-based Training Methods for Scalable Neural Implicit Sampler [15.978655106034113]
Efficiently sampling from un-normalized target distributions is a fundamental problem in scientific computing and machine learning.
In this paper, we propose an efficient and scalable neural implicit sampler that overcomes these limitations.
Our sampler can generate large batches of samples with low computational costs by leveraging a neural transformation that directly maps easily sampled latent vectors to target samples.
arXiv Detail & Related papers (2023-06-08T05:56:05Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
We use neural operators, an efficient method to solve the probability flow differential equations, to accelerate the sampling process of diffusion models.
Compared to other fast sampling methods that have a sequential nature, we are the first to propose a parallel decoding method.
We show our method achieves state-of-the-art FID of 3.78 for CIFAR-10 and 7.83 for ImageNet-64 in the one-model-evaluation setting.
arXiv Detail & Related papers (2022-11-24T07:30:27Z) - Unrolling Particles: Unsupervised Learning of Sampling Distributions [102.72972137287728]
Particle filtering is used to compute good nonlinear estimates of complex systems.
We show in simulations that the resulting particle filter yields good estimates in a wide range of scenarios.
arXiv Detail & Related papers (2021-10-06T16:58:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.